DOI: https://dx.doi.org/10.18565/pharmateca.2024.1.142-152
Трухан Д.И., Рожкова М.Ю., Иванова Д.С., Голошубина В.В.
Омский государственный медицинский университет, Омск, Россия
1. Клинические рекомендации. Острые респираторные вирусные инфекции (ОРВИ) у взрослых. 2021. 2. Клинические рекомендации. Острая респираторная вирусная инфекция (ОРВИ). 2021. 3. Трухан Д.И., Филимонов С.Н. Дифференциальный диагноз основных пульмонологических симптомов и синдромов. Санкт-Петербург: СпецЛит, 2019. 176 с. 4. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1–2):136–45. 5. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371–82. Doi: 10.1177/0884533615570376. 6. Shankar A.H., Prasad A.S. Zinc and immune function: the biological basis of altered resistance to infection. Am J ClinNutr. 1998;68(Suppl. 2):447S–63. Doi: 10.1093/ajcn/68.2.447S. 7. Overbeck S., Rink L., Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch. Immunol TherExp. (Warsz). 2008;56(1):15–30. Doi: 10.1007/s00005-008-0003-8. 8. Wessels I., Maywald M., Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017;9(12):1286. Doi: 10.3390/nu9121286. 9. Jarosz M., Olbert M., Wyszogrodzka G., et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacol. 2017;25(1):11–24. Doi: 10.1007/s10787-017-0309-4. 10. Kirkil G., Hamdi Muz M., Seckin D., et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 2008;102(6):840–44. Doi: 10.1016/j.rmed.2008.01.010. 11. Samad N., Sodunke T.E., Abubakar A.R., et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res. 2021;14:527–50. doi: 10.2147/JIR.S295377. 12. Li J., Cao D., Huang Y., et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022;9:798078. doi: 10.3389/fnut.2022.798078. 13. Bao S., Knoell D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 2006;291(6):L1132–41.doi: 10.1152/ajplung.00207.2006. 14. Vlieg-Boerstra B., de Jong N., Meyer R., et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy. 2022;77(5):1373–88. doi: 10.1111/all.15136. 15. Kaushik N., Subramani C., Anang S., et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 2017;91(21):e00754–17. Doi: 10.1128/JVI.00754-17. 16. Corrao S., Mallaci Bocchio R., Lo Monaco M., et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients. 2021;13(4):1261. Doi: 10.3390/nu13041261. 17. Patel O., Chinni V., El-Khoury .J, et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. JMed. Virol. 2021;93(5):3261–7. 18. Scarpellini E., Balsiger L.M., Maurizi V., et al. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors. 2022;48(2):294–306. doi: 10.1002/biof.1829. 19. Skalny A.V., Rink L., Ajsuvakova O.P., et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). IntJ. Mol Med. 2020;46(1):17–26. doi: 10.3892/ijmm.2020.4575. 20. Han Y.S., Chang G.G., Juo C.G., et al. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. Biochem. 2005;44(30):10349–59. doi: 10.1021/bi0504761. 21. Jothimani D., Kailasam E., Danielraj S., et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343–9. doi: 10.1016/j.ijid.2020.09.014. 22. Wessels I., Rolles B., Rink L. The Potential Impact of Zinc Supplementation on COVID-19. Pathogenesis. Front Immunol. 2020;11:1712. doi: 10.3389/fimmu.2020.01712. 23. Tomasa-Irriguible T.-M., Bielsa-Berrocal L., Bordeje-Laguna L., et al. Low levels of few micronutrients may impact COVID-19 disease progression: an observational study on the first wave. Metabol. 2021;11(9):565. doi: 10.3390/metabo11090565. 24. Wessels I., Rolles B., Slusarenko A.J., Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214–32. doi: 10.1017/S0007114521000738. 25. Трухан Д.И. Новая коронавирусная инфекция (COVID-19) и заболевания/патологические состояния органов дыхания. Медицинский совет. 2022;16(18):154–61. 26. Tabatabaeizadeh S.A. Zinc supplementation and COVID-19 mortality: a meta-analysis. Eur J Med Res. 2022;27(1):70. doi: 10.1186/s40001-022-00694-z. 27. Rahman M.T., Idid S.Z. Can Zn Be a Critical Element in COVID-19 Treatment? Biol Trace Elem Res. 2021;199(2):550–8. doi: 10.1007/s12011-020-02194-9. 28. de Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65–6. Doi: 10.1016/j.clnesp.2020.06.003. 29. Hunter J., Arentz S., Goldenberg J., et al. Zinc for the prevention or treatment of acute viral respiratory tract infections in adults: a rapid systematic review and meta-analysis of randomised controlled trials. BMJ. Open. 2021;11(11):e047474. Doi: 10.1136/bmjopen-2020-047474. 30. Marreiro D.D.N., Cruz K.J.C., Oliveira A.R.S., et al. Antiviral and immunological activity of zinc and possible role in COVID-19. Br J Nutr. 2022;127(8):1172–79. Doi: 10.1017/S0007114521002099. 31. Martinez S.S., Huang Y., Acuna L., et al. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int J Mol Sci. 2021;23(1):280. Doi: 10.3390/ijms23010280. 32. Barchielli G., Capperucci A., Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel). 2022;11(2):251. Doi: 10.3390/antiox11020251. 33. Moghaddam A., Heller R.A., Sun Q., et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. Doi: 10.3390/nu12072098. 34. Bae M., Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. Doi: 10.3390/molecules25225346. 35. Duntas L.H., Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756–75. doi: 10.1007/s12020-014-0477-6. 36. Beck M.A., Nelson H.K., Shi Q., et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15(8):1481–83. 37. Taylor E.W., Radding W. Understanding selenium and glutathione as antiviral factors in COVID-19: does the viral Mpro protease target host selenoproteins and glutathione synthesis? Front Nutr. 2020;7:143. Doi: 10.3389/fnut.2020.00143. 38. Khatiwada S., Subedi A. A mechanistic link between selenium and coronavirus disease 2019 (COVID-19). Curr Nutr Rep. 2021;10(2):125–36. Doi: 10.1007/s13668-021-00354-4. 39. Avery J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. Doi: 10.3390/nu10091203. 40. Seale L.A., Torres D.J., Berry M.J., Pitts M.W. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am J Clin Nutr. 2020;112:447–48. Doi: 10.1093/ajcn/nqaa177. 41. Laforge M., Elbim C., Frere C., et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–16. Doi: 10.1038/s41577-020-0407-1. 42. Bermano G., Meplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618–27. Doi: 10.1017/S0007114520003128. 43. Tomo S., Saikiran G., Banerjee M., Paul S. Selenium to selenoproteins - role in COVID-19. EXCLI J. 2021;20:781–91. Doi: 10.17179/excli2021-3530. 44. Schomburg L. Selenium Deficiency in COVID-19-A Possible Long-Lasting Toxic Relationship. Nutrients. 2022;14(2):283. Doi: 10.3390/nu14020283. 45. Schomburg L. Selenoprotein P – Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med. 2022;191:150–63. Doi: 10.1016/j.freeradbiomed.2022.08.022. 46. Lima L.W., Nardi S., Santoro V., Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel). 2021;10(7):1031. Doi: 10.3390/antiox10071031. 47. Im J.H., Je Y.S., Baek J., et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390–93. Doi: 10.1016/j.ijid.2020.08.018. 48. Younesian O., Khodabakhshi B., Abdolahi N., et al. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res. 2021:1–6. Doi: 10.1007/s12011-021-02797-w. 49. Rayman M.P., Taylor E.W., Zhang J. The relevance of selenium to viral disease with special reference to SARS-CoV-2 and COVID-19. Proc Nutr Soc. 2022:1–12. Doi: 10.1017/S0029665122002646. 50. Kieliszek M., Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. Doi: 10.1016/j.mehy.2020.109878. 51. Liu X., Yin S., Li G. Effects of selenium supplement on acute lower respiratory tract infection caused by respiratory syncytial virus. Zhonghua Yu Fang Yi Xue Za Zhi. 1997;31(6):358–61. 52. Oliveira C.R., Viana E.T., Goncalves T.F., et al. Therapeutic use of intravenous selenium in respiratory and immunological diseases: evidence based on reviews focused on clinical trials. Adv Respir Med. 2022 Jan 31. Doi: 10.5603/ARM.a2022.0018. 53. Taheri S., Asadi S., Nilashi M., et al. A literature review on beneficial role of vitamins and trace elements: Evidence from published clinical studies. J Trace Elem Med Biol. 2021;67:126789. Doi: 10.1016/j.jtemb.2021.126789. 54. Junaid K., Ejaz H., Abdalla A.E., et al. Effective Immune Functions of Micronutrients against SARS-CoV-2. Nutrients. 2020;12(10):2992. Doi: 10.3390/nu12102992. 55. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ. J. Basic Appl. Sci. 2021;10(1):33. Doi: 10.1186/s43088-021-00123-w. 56. Engin A.B., Engin E.D., Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol. 2022;95:103937. Doi: 10.1016/j.etap.2022.103937. 57. Alexander J., Tinkov A., Strand T.A., et al. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients. 2020;12(8):2358. Doi: 10.3390/nu12082358. 58. Huang Z., Liu Y., Qi G., et al. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258. Doi: 10.3390/jcm7090258. 59. Stephensen C.B., Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021;126(11):1663–72. Doi: 10.1017/S0007114521000246. 60. Elmadfa I., Meyer A.L. The role of the status of selected micronutrients in shaping the immune function. Endocr Metab Immun Disord Drug Targets. 2019;19:1100–15. Doi: 10.2174/1871530319666190529101816. 61. Diyya A.S.M., Thomas N.V. Multiple Micronutrient Supplementation: As a Supportive Therapy in the Treatment of COVID-19. BiomedRes. Int. 2022;2022:3323825. Doi: 10.1155/2022/3323825. 62. Tepasse P.R., Vollenberg R., Fobker M., et al. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients. 2021;13(7):2173. Doi: 10.3390/nu13072173. 63. Zhang Y., Du Z., Ma W., et al. Vitamin A status and recurrent respiratory infection among Chinese children: a nationally representative survey. Asia Pac J Clin Nutr. 2020;29:566–76. Doi: 10.6133/apjcn.202009_29(3).0016. 64. Abdelkader A., Wahba A.A., El-Tonsy M., et al. Recurrent respiratory infections and vitamin A levels: a link? It is cross-sectional. Medicine (Baltimore). 2022;101(33):e30108. Doi: 10.1097/MD.0000000000030108. 65. Park J.H., Lee Y., Choi M., Park E. The Role of Some Vitamins in Respiratory-related Viral Infections: A Narrative Review. Clin Nutr Res. 2023;12(1):77–89. Doi: 10.7762/cnr.2023.12.1.77. 66. Figueroa-Méndez R., Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015;6:397. Doi: 10.3389/fphys.2015.00397. 67. Abioye A.I., Bromage S., Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ. Glob Health. 2021;6(1):e003176. Doi: 10.1136/bmjgh-2020-003176. 68. Van Straten M., Josling P. Preventing the common cold with a vitamin C supplement: a double-blind, placebo-controlled survey. Adv Ther. 2002;19:151–59. Doi: 10.1007/BF02850271. 69. Johnston C.S., Barkyoumb G.M., Schumacher S.S. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: a randomized controlled trial. Nutrients. 2014;6:2572–83. Doi: 10.3390/nu6072572. 70. Kim T.K., Lim H.R., Byun J.S. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: randomised controlled trial. BMJ. Mil Health. 2022;168:117–23. Doi: 10.1136/bmjmilitary-2019-001384. 71. Hemila H., Douglas R.M. Vitamin C and acute respiratory infections. Int J Tuberc Lung Dis. 1999;3(9):756–61. 72. Hemila H. Vitamin C and common cold incidence: a review of studies with subjects under heavy physical stress. Int J Sports Med. 1996;17(5):379–83. Doi: 10.1055/s-2007-972864. 73. Swain R.A., Kaplan B. Upper respiratory infections: treatment selection for active patients. Phys Sportsmed. 1998;26(2):85–96. Doi: 10.3810/psm.1998.02.944. 74. Khaw K.T., Woodhouse P. Interrelation of vitamin C, infection, haemostatic factors, and cardiovascular disease. BMJ. 1995;310(6994):1559–63. Doi: 10.1136/bmj.310.6994.1559. 75. Shahbaz U., Fatima N., Basharat S., et al. Role of vitamin C in preventing of COVID-19 infection, progression and severity. AIMS Microbiol. 2022;8(1):108–24. Doi: 10.3934/microbiol.2022010. 76. Ebrahimzadeh-Attari V., Panahi G., Hebert J.R., et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect. 2021;11(2):119–36. Doi: 10.34172/hpp.2021.17. 77. Schloss J., Lauche R., Harnett J., et al. Efficacy and safety of vitamin C in the management of acute respiratory infection and disease: A rapid review. Adv Integr Med. 2020;7(4):187–91. Doi: 10.1016/j.aimed.2020.07.008. 78. Ran L., Zhao W., Wang J., et al. Extra Dose of Vitamin C Based on a Daily Supplementation Shortens the Common Cold: A Meta-Analysis of 9 Randomized Controlled Trials. Biomed Res Int. 2018;2018:1837634. doi: 10.1155/2018/1837634. 79. Hemilä H., Chalker E. Vitamin C reduces the severity of common colds: a meta-analysis. BMC. Public Health. 2023;23(1):2468. Doi: 10.1186/s12889-023-17229-8. 80. Abobaker A., Alzwi A., Alraied A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020;72(6):1517–28. Doi: 10.1007/s43440-020-00176-1. 81. Uddin M.S., Millat M.S., Baral P.K., et al. The protective role of vitamin C in the management of COVID-19: A Review. J Egypt Public Health Assoc. 2021;96(1):33. Doi: 10.1186/s42506-021-00095-w. 82. Iddir M., Brito A., Dingeo G., et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. Doi: 10.3390/nu12061562. 83. Tavakol S., Seifalian A.M. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem. 2021:10.1002/bab.2176. doi: 10.1002/bab.2176. 84. Lai Y.J., Chang H.S., Yang Y.P., et al. The role of micronutrient and immunomodulation effect in the vaccine era of COVID-19. J ChinMed. Assoc. 2021;84(9):821–26. Doi: 10.1097/JCMA.0000000000000587. 85. Meydani S.N., Leka L.S., Fine B.C., et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. JAMA. 2004;292:828–36. Doi: 10.1001/jama.292.7.828. 86. Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12(4):1181. Doi: 10.3390/nu12041181. 87. Alkhatib A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients. 2020;12(9):2633. Doi: 10.3390/nu12092633. 88. Pecora F., Persico F., Argentiero A., et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. Doi: 10.3390/nu12103198. 89. Jayawardena R., Sooriyaarachchi P., Chourdakis M., et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diab Metab Syndr. 2020;14(4):367–82. Doi: 10.1016/j.dsx.2020.04.015. 90. Di Renzo L., Gualtieri P., Pivari F., et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med. 2020;18(1):415. Doi: 10.1186/s12967-020-02594-4. 91. Zelka F.Z., Kocatürk R.R., Özcan Ö.Ö., et al. Can Nutritional Supports Beneficial in Other Viral Diseases Be Favorable for COVID-19? Korean J Fam Med. 2022;43(1):3–15. Doi: 10.4082/kjfm.20.0134. 92. Calder P.C. Nutrition, immunity and COVID-19. BMJ. Nutr Prev Health. 2020;3(1):74–92. Doi: 10.1136/bmjnph-2020-00008593. Shakoor H., Feehan J., Al Dhaheri A.S., et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1–9. Doi: 10.1016/j.maturitas.2020.08.003. 94. Kumar P., Kumar M., Bedi O., et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacol. 2021:1–16. Doi: 10.1007/s10787-021-00826-7. 95. Galmés S., Serra F., Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020;12(9):2738. Doi: 10.3390/nu12092738. 96. Cámara M., Sánchez-Mata M.C., Fernández-Ruiz V., et al. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods. 2021;10(5):1088. Doi: 10.3390/foods10051088. 97. Dharmalingam K., Birdi A., Tomo S., et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem. 2021:1–11. Doi: 10.1007/s12291-021-00961-6. 98. Гриневич В.Б., Губонина И.В., Дощицин В.Л. и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630. 99. Трухан Д.И, Тарасова Л.В. Особенности клиники и лечения острых респираторных вирусных инфекций в практике врача-терапевта. Врач. 2014;8: 44–7. 100. Трухан Д.И., Мазуров А.Л., Речапова Л.А. Острые респираторные вирусные инфекции: актуальные вопросы диагностики, профилактики и лечения в практике терапевта. Терапевтический архив. 2016;11:76–82. 101. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;10:34–45. 102. Трухан Д.И., Давыдов Е.Л., Чусова Н.А., Чусов И.С. Возможности терапевта в профилактике и на реабилитационном этапе после новой коронавирусной инфекции (COVID-19) коморбидных пациентов с артериальной гипертензией. Клинический разбор в общей медицине. 2021;5:6–15. 103. Трухан Д.И., Давыдов Е.Л., Чусова Н.А. Нутрицевтики в профилактике, лечении и на этапе реабилитации после новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2021;7:21–34. 104. Трухан Д.И., Турутина Н.М. Витаминно-минеральные комплексы в лечении острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2022;6:52–60. 105. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1–2):136–45. 106. Попова Е.Н., Пономарева Л.А., Чинова А.А., Андрианов А.И. Комплексный подход к терапии острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2023;4(8):42–5. 107. Попова Е.Н., Митькина М.И., Чинова А.А., Пономарева Л.А. Роль витаминов и микроэлементов в профилактике и лечении бронхолегочных заболеваний у взрослых. Клинический разбор в общей медицине. 2023;4(2):36–42. 108. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;28(10):34–45. 109. Трухан Д.И. Коморбидный пациент на терапевтическом приеме в период пандемии COVID-19. Актуальные аспекты реабилитационного периода. Фарматека. 2022;29(13):15–24. 110. Трухан Д.И., Иванова Д.С. Витаминно-минеральные комплексы в профилактике, лечении и на этапе реабилитации после острых респираторных вирусных инфекций и новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2022;5:33–46.
Автор для связи: Дмитрий Иванович Трухан, д.м.н., доцент, профессор кафедры поликлинической терапии и внутренних болезней, Омский государственный медицинский университет, Омск, Россия; dmitry_trukhan@mail.ru ORCID:
Д.И. Трухан (D.I. Trukhan), https://orcid.org/0000-0002-1597-1876
М.Ю. Рожкова (M.Yu. Rozhkova), https://orcid.org/0000-0002-7695-149X
Д.С. Иванова (D.S. Ivanova), https://orcid.org/0000-0002-4145-7969
В.В. Голошубина (V.V. Goloshubina), https://orcid.org/0000-0003-1481-8842