Проблемы трансплантации поджелудочной железы и роль биоинженерных материалов в долгосрочной выживаемости и функционировании островковых клеток


DOI: https://dx.doi.org/10.18565/pharmateca.2023.3.44-52

Булгакова С.В., Шаронова Л.А., Долгих Ю.А., Косарева О.В., Тренева Е.В., Курмаев Д.П.

Самарский государственный медицинский университет, Самара, Россия
Замена β-клеток с помощью трансплантации донорской поджелудочной железы (ПЖ) или клеточной терапии может быть решением ряда проблем, связанных с лечением пациентов с сахарным диабетом 1 типа. В статье обсуждаются проблемы трансплантации ПЖ и островковых клеток, роль внеклеточного матрикса в поддержании функциональной активности и выживании β-клеток островков ПЖ. Представлены данные о возможных источниках инсулин-продуцирующих клеток и эволюции методов трансплантации. В статье обсуждаются особенности биоматериалов для биоинженерных каркасов, направленных на защиту трансплантата от иммунных реакций реципиента, облегчение обмена жизненно важными молекулами, улучшение жизнеспособности и метаболической активности островковых клеток. Проведен анализ преимуществ и недостатков инкапсулирующих устройств различного размера, возможных решений вопроса васкуляризации трансплантата, а также перспектив применения 3D-биопечати ПЖ.

Литература


1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021; 24(S1):1–148.


2. Lin Y.-J., Mi F.-L., Lin P.-Y., et al. Strategies for Improving Diabetic Therapy via Alternative Administration Routes that Involve Stimuli-Responsive Insulin-Delivering Systems. Adv Drug Deliv Rev. 2019;139:71–82. Doi: 10.1016/j.addr.2018.12.001.


3. Shrestha, P., Regmi, S., Jeong, J.-H. Injectable Hydrogels for Islet Transplantation: A Concise Review. J Pharm Investig. 2020;50(1):29–45. Doi: 10.1007/s40005-019-00433-3.


4. Gruessner A.C., Gruessner R.W. Long-term outcome after pancreas transplantation: a registry analysis. Curr Opin Organ Transplant. 2016;21:377–85. Doi: 10.1097/MOT.0000000000000331.


5. Niclauss N., Meier R., Bedat B., et al. Beta-Cell replacement: pancreas and islet cell transplantation. Endocr Dev. 2016;31:146–62. Doi: 10.1159/000439412


6. Shapiro A.M., Lakey J.R., Ryan E.A., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–38. Doi: 10.1056/NEJM200007273430401.


7. Gamble A., Pepper A.R., Bruni A., Shapiro A.M.J. The journey of islet cell transplantation and future development. Islets. 2018;10:80–94. Doi: 10.1080/19382014.2018.1428511.


8. Vantyghem M.C., de Koning E.J.P., Pattou F., Rickels M.R. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet. 2019;394:1274–85. Doi: 10.1016/S0140-6736(19)31334-0.


9. Rodriguez-Diaz R., Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 2014;28(5):745–56. Doi: 10.1016/j.beem.2014.05.002.


10. Arrojo e Drigo R., Ali Y., Diez J., et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 2015;58:2218–28. Doi: 10.1007/s00125-015-3699-0.


11. Aamodt K.I., Powers A.C. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab. 2017;19(Suppl 1):124–36. Doi: 10.1111/dom.13031.


12. Parnaud G., Lavallard V., Bedat B., et al. Cadherin Engagement Improves Insulin Secretion of Single Human β-Cells. Diabetes. 2015;64(3):887–896. Doi: 10.2337/db14-0257.


13. Баранов С.А., Нечаев В.М. Поджелудочная железа как единый функционально взаимосвязанный орган. Медицинский Совет. 2017;(11):148–51.


14. Narayanan S., Loganathan G., Dhanasekaran M., et al. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant. 2017;7(2):117–28. Doi: 10.5500/wjt.v7.i2.117.


15. Phelps E., Cianciaruso C., Santo-Domingo J., et al. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep. 2017;7:45961 Doi: 10.1038/srep45961.


16. Riopel M., Krishnamurthy M., Li J., et al. Conditional β1-integrin-deficient mice display impaired pancreatic β cell function. J Pathol. 2011;224(1):45–55. Doi: 10.1002/path.2849.


17. Wassmer C., Lebreton F., Bellofatto K., et al. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int. 2020;33:1577–88. Doi: 10.1111/tri.13721.


18. Lammert E., Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol. 2020;432(5):1407–18. Doi: 10.1016/j.jmb.2019.10.032.


19. Patel S.N., Mathews C.E., Chandler R., Stabler C.L. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne). 2022;13:881525. Doi: 10.3389/fendo.2022.881525.


20. Muchkaeva I.A., Dashinimaev E.B., Artyuhov A.S., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6(1):45–53.


21. Okita K., Yamakawa T., Matsumura Y., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458–66. Doi: 10.1002/stem.1293.


22. Xue Y., Cai X., Wang L., et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 2013;8(8):e70573. Doi: 10.1371/journal.pone.0070573.


23. Ariyachet C., Tovaglieri A., Xiang G., et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell. 2016;18:410–21. Doi: 10.1016/j.stem.2016.01.003.


24. Lysy P.A., Weir G.C., Bonner-Weir S. Making β cells from adult cells within the pancreas. Curr Diab Rep. 2013;13:695–703. Doi: 10.1007/s11892-013-0400-1.


25. Itakura G., Kawabata S., Ando M., et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of IPSC Derivatives. Stem Cell Rep. 2017;8:673–84. Doi: 10.1016/j.stemcr.2017.02.003.


26. Maoz B., Herland A., FitzGerald E., et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36:865–874. Doi: 10.1038/nbt.4226.


27. Murphy S., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. Doi: 10.1038/nbt.2958.


28. Chang T.M.S. Semipermeable Microcapsules. Science. 1964;146:524–25. Doi: 10.1126/science.146.3643.524.


29. Lim F., Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980 Nov 21;210(4472):908–10. Doi: 10.1126/science.6776628.


30. Шуплецова В.В., Литвинова Л.С., Карпов А.А. и др. Инкапсуляция клеток и тканей поджелудочной железы: проблемы и пути их преодоления. Гены & Клетки. 2016;XI(1):18–23.


31. Caserto J.S., Bowers D.T., Shariati K., Ma M. Biomaterial Applications in Islet Encapsulation and Transplantation. ACS Appl. Bio Mater. 2020;3(12):8127–35. Doi: 10.1021/acsabm.0c01235.


32. Cao, H., Duan, L., Zhang, Y. et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig Transduct Target Ther. 2021;6:426. Doi: 10.1038/s41392-021-00830-x.


33. Lin P Ma S, Wang X, Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater. 20155;27(12):2054–59. Doi: 10.1002/adma.201405022.


34. Wu F., Pang Y., Liu J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat Commun. 2020;11(1):4502. Doi: 10.1038/s41467-020-18308-9.


35. Zamboni F., Collins M.N. Cell Based Therapeutics in Type 1 Diabetes Mellitus. Int J Pharmaceutics. 2017;521(1–2):346–356. Doi: 10.1016/j.ijpharm.2017.02.063.


36. Dalheim M. O., Vanacker J., Najmi M.A., et al. Efficient functionalization of alginate biomaterials. Biomaterials. 2016;80:146-156. Doi: 10.1016/j.biomaterials.2015.11.043.


37. Espona-Noguera A., Ciriza J., Canibano-Hernandez A., et al. Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. Int J Biol Macromol. 2018;107(Pt A):1261–69. Doi: 10.1016/j.ijbiomac.2017.09.103.


38. Bai X., Pei Q., Pu C., et al. Multifunctional Islet Transplantation Hydrogel Encapsulating A20 High-Expressing Islets. Drug Des Devel Ther. 2020;14:4021–27. Doi: 10.2147/DDDT.S273050.


39. Knobeloch T., Abadi S.E.M., Bruns J., et al. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express. 2017;3:035022. Doi: 10.1088/2057-1976/aa742b.


40. Lin C.C., Raza A., Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials. 2011;32(36):9685–95. Doi: 10.1016/j.biomaterials.2011.08.083.


41. Кузнецова В.С., Васильев А.В., Григорьев Т.Е. и др. Перспективы использования гидрогелей в качестве основы для отверждаемых костно-пластических материалов. Стоматология. 2017;96(6):68–74.


42. Hogrebe N.J., Reinhardt J.W., Gooch K.J. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A. 2017;105(2):640–61. Doi: 10.1002/jbm.a.35914.


43. Kratochvil M.J., Seymour A.J., Li T.L., et al. Engineered materials for organoid systems. Nat Rev Mater. 2019;4(9):60622. Doi: 10.1038/s41578-019-0129-9.


44. Wang J.K., Cheam N.M.J., Irvine S.A., et al. Interpenetrating Network of Alginate-Human Adipose Extracellular Matrix Hydrogel for Islet Cells Encapsulation. Macromol Rapid Commun. 2020;41(21):2000275–76. Doi: 10.1002/marc.202000275.


45. Bellofatto K., Moeckli B., Wassmer C.H., et al. Bioengineered Islet Cell Transplantation. Curr Transpl Rep. 2021;8:57–66. Doi: 10.1007/s40472-021-00318-1.


46. Primavera R., Kevadiya B.D., Swaminathan G., et al. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. Nanomaterials (Basel). 2020;10(4):789. Doi: 10.3390/nano10040789.


47. Opara A., Jost A., Dagogo-Jack S., Opara E.C.Islet cell encapsulation–Application in diabetes treatment. Experimental Biology and Medicine. 2021;246(24):2570-2578. Doi: 10.1177/15353702211040503.


48. Daly A.C., Riley L., Segura T., Burdick J.A. Hydrogel Microparticles for Biomedical Applications. Nat Rev Mater. 2020;5(1):20–43. Doi: 10.1038/s41578-019-0148-6.


49. Hu S., Martinez-Garcia F.D., Moeun B.N., et al. An Immune Regulatory 3D-Printed Alginate-Pectin Construct for Immunoisolation of Insulin Producing β-cells. Mater Sci Eng. 2021;123:112009. Doi: 10.1016/j.msec.2021.112009.


50. Laporte C., Tubbs E., Pierron M., et al. Improved human islets’ viability and functionality with mesenchymal stem cells and arg-gly-asp tripeptides supplementation of alginate micro-encapsulated islets in vitro. Biochem Biophys Res Commun. 2020;528(4):650–57. Doi: 10.1016/j.bbrc.2020.05.107.


51. Kwiatkowski A.J., Stewart J.M., Cho J.J., et al. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater. 2020;9(11):2000164–11. Doi: 10.1002/adhm.202000164.


52. Youn W., Kim J.Y., Park J., et al. Single-Cell Nanoencapsulation: From Passive to Active Shells. Adv Mater. 2020;32(35):e1907001. Doi: 10.1002/adma.201907001.


53. Krol S., Baronti W., Marchetti P. Nanoencapsulated Human Pancreatic Islets for β-cell Replacement in Type 1 Diabetes. Nanomedicine. 2020;15(18):1735–38. Doi: 10.2217/nnm-2020-0166.


54. Toni T. De., Stock A.A., Devaux F., et al. Parallel evaluation of polyethylene glycol conformal coating and alginate microencapsulation as immunoisolation strategies for pancreatic islet transplantation. Front Bioeng Biotechnol. 2022;10:886483. Doi: 10.1016/j.lpm.2022.104139.


55. Syed F., Bugliani M., Novelli M., et al. Conformal Coating by Multilayer Nano-Encapsulation for the Protection of Human Pancreatic Islets: In-Vitro and In-Vivo Studies. Nanomedicine: Nanotechnol Biol Med. 2018;14(7):2191–203. Doi: 10.1016/j.nano.2018.06.013.


56. Desai T., Shea L.D. Advances in Islet Encapsulation Technologies. Nat Rev Drug Discov. 2017;16(5):338–50. Doi: 10.1038/nrd.2016.232.


57. Joao Paulo M. C. M., Leuckx G., Sterkendries P., et al. Human Multipotent Adult Progenitor Cells Enhance Islet Function and Revascularisation when Co-transplanted as a Composite Pellet in a Mouse Model of Diabetes. Diabetologia. 2016;60:134–12. Doi: 10.1007/s00125-016-4120-3.


58. Mohamed-ahmed S., Fristad I., Suliman S., et al. “Adipose-Derived and Bone Marrow Mesenchymal Stem Cells: A Donor-Matched Comparison”. Stem Cel Res Ther. 2018;9(1):168. Doi: 10.1186/s13287-018-0914-1.


59. Nour S., Imani R., Chaudhry G.R., Sharifi A.M. Skin Wound Healing Assisted by Angiogenic Targeted Tissue Engineering: A Comprehensive Review of Bioengineered Approaches. J Biomed Mater Res. 2020;109:453–478. Doi: 10.1002/jbm.a.37105.


60. Toftdal M.S., Taebnia N., Kadumudi F.B., et al. Oxygen Releasing Hydrogels for Beta Cell Assisted Therapy. Int J Pharm. 2021;602:120595. Doi: 10.1016/j.ijpharm.2021.120595.


61. Wang L.-H., Ernst A. U., Flanders J. A., et al. An Inverse-Breathing Encapsulation System for Cell Delivery. Sci Adv. 2021;7(20):eabd5835. Doi: 10.1126/sciadv.abd5835.


62. Ribeiro D., Kvist A.J., Wittung-Stafshede P., et al. 3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep. 2018;14(2):177–88. Doi: 10.1007/s12015-017-9783-8.


63. Klak M., Kowalska P., Dobrzanski T., et al. Bionic Organs: Shear Forces Reduce Pancreatic Islet and Mammalian Cell Viability during the Process of 3D Bioprinting. Micromachines (Basel). 2021;12(3):304. Doi: 10.3390/mi12030304.


64. Leberfinger A.N., Ravnic D.J., Dhawan A., Ozbolat I.T. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med. 2017;6(10):1940–48. Doi: 10.1002/sctm.17-0148.


65. Хесуани Ю.Дж., Сергеева Н.С., Миронов В.А. и др. Введение в 3D-биопринтинг: история формирования направления, принципы и этапы биопечати. Гены и клетки. 2018;13(3):38–45.


66. Melchels F.P., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30. Doi: 10.1016/j.biomaterials.2010.04.050.


67. Lanza R.P., Chung H.Y., Yoo J.J., et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20:689–96. Doi: 10.1038/nbt703.


68. Lebreton F., Bellofatto K., Wassmer C.H., et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant. 2020;20(6):1551–61. Doi: 10.1111/ajt.15812.


69. Marchioli G., van Gurp L., van Krieken P.P., et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7:025009. Doi: 10.1088/1758-5090/7/2/025009.


70. Duin S., Schutz K., Ahlfeld T., et al. 3D Bioprinting of functional islets of Langerhans in an alginate/methylcellulose hydrogel blend. Adv Health Mater. 2019;8:e1801631. Doi: 10.1002/adhm.201801631.


71. Farina M., Ballerini A., Fraga D.W., et al. 3D Printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J. 2017;12. Doi: 10.1002/biot.201700169.


72. Liu X., Carter S.D., Renes M.J., et al. Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Health Mater. 2019;8:e1801181. Doi: 10.1002/adhm.201801181.


73. Польские учёные напечатали первую в мире бионическую поджелудочную железу с сосудами / Хабр


74. Academia and business to develop 3D printed pancreas for testing diabetes medication - Med-Tech Innovation.


Об авторах / Для корреспонденции


Автор для связи: Людмила Александровна Шаронова, к.м.н., доцент кафедры эндокринологии и гериатрии, Самарский государственный медицинский университет, Самара, Россия; l.a.sharonova@samsmu.ru


ORCID:
Булгакова С.В. (Svetlana V. Bulgakova), https://orcid.org/0000-0003-0027-1786 
Шаронова Л.А. (Lyudmila A. Sharonova), https://orcid.org/0000-0001-8827-4919 
Долгих Ю.А. (Yuliya A. Dolgikh), https://orcid.org/0000-0001-6678-6411  
Косарева О.В. (Olga V. Kosareva), https://orcid.org/0000-0002-5754-1057 
Тренева Е.В. (Ekaterina V. Treneva), https://orcid.org/0000-0003-0097-7252 
Курмаев Д.П. (Dmitry P. Kurmaev), https://orcid.org/0000-0003-4114-5233 


Похожие статьи


Бионика Медиа