Роль иммунологических параметров периферической крови в качестве предиктивных маркеров у онкологических больных: прогностическая роль индекса нейтрофилы/лимфоциты


DOI: https://dx.doi.org/10.18565/pharmateca.2019.7.28-32

И.А. Балдуева (1), А.В. Новик (1, 2)

1) Научный медицинский исследовательский центр онкологии онкологии им. Н.Н. Петрова, Санкт-Петербург, Россия; 2) Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург, Россия
Соотношение нейтрофилов и лимфоцитов представляет собой простой и информативный прогностический биомаркер у больных злокачественными опухолями. В данном обзоре рассмотрены роль нейтрофилов при онкологических процессах и иммунологические основы их взаимодействия с лимфоцитами в процессе развития анергии Т-лимфоцитов. Представлены примеры клинического применения данного соотношения в качестве предиктивного и прогностического маркеров, а также его связь с некоторыми другими факторами.
Ключевые слова: индекс нейтрофилы/лимфоциты, иммунология опухолевого роста, биомаркеры

Литература


1. Alderton G.K. Tumor immunology: TIM3 suppresses antitumor DCs. Nat Rev Immunol. 2012;12(9):620–21. Doi: 10.1038/nri3288.

2. Andrews L.P., Marciscano A.E., Drake C.G., Vignali D.A.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80–96. Doi: 10.1111/imr.12519.

3. Antonio N., Bonnelykke-Behrndtz M.L., Ward L.C.,et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015;34:2219–36. Doi: 10.15252/embj.201490147.

4. Asna N., Cohen O., Batash R., et al. Is neutrophil-to-lymphocyte ratio a prediction marker for success of immunotherapy? Preliminary results. OJI. 2018;8:29–35. Doi: 10.4236/oji.2018.82003.

5. Baitsch L., Baumgaertner P., Devêvre E., et al. Exhaustion of tumor-specific СВ8+ T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350–60. Doi: 10.1172/JCI46102.

6. Boissier R., Campagna J., Branger N., et al. The prognostic value of the neutrophil-lymphocyte ratio in renal oncology: a review. Urol Oncol. 2017;35:135–41. Doi:10.1016/j.urolonc.2017.01.016.

7. Buisan O., Orsola A., Areal J., et al. Low Pretreatment neutrophil-to-lymphocyte ratio predicts for good outcomes in patients receiving neoadjuvant chemotherapy before radical cystectomy for muscle invasive bladder cancer. Clin Genitourinary Cancer. 2017;15:145–51.e2. Doi: 10.1016/j.clgc.2016.05.004.

8. Chou F.C., Chen H.Y., Kuo C.C., Sytwu H.K. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018;19(2).pill: E430. Doi: 10.3390/ijms19020430.

9. Coffelt S.B., Wellenstein M.D., de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46. Doi: 10.1038/nrc.2016.52.

10. Ericson J.A., Duffau P., Yasuda K., et al. Gene expression during the generation and activation of mouse neutrophils: implication of novel functional and regulatory pathways. PLoS ONE. 2014;9:e108553. Doi: 10.1371/journal.pone.0108553.

11. Finisguerra V., Di Conza G., Di Matteo M., et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349–53. Doi: 10.1038/nature14407.

12. Granot Z., Henke E., Comen E.A., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300–14. Doi: 10.1016/j.ccr.2011.08.012.

13. Grecian R., Whyte M.K.B., Walmsley S.R. The role of neutrophils in cancer. Br Med Bull. 2018;128(1):5–14. Doi: 10.1093/bmb/ldy029.

14. Grywalska E., Pasiarski M., Gozdz S. Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther. 2018;11:6505–24. Doi: 0.2147/OTT.S150817.

15. Kondo Y., Ohno T., Nishii N., et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell. Oral Oncol.2016;57:54–60. Doi: 10.1016/j.oraloncology.2016.04.005.

16. Lalani A-K.A, Xie W., Martini D.J., et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J. Immunother. Cancer. 2018;6:5. Doi: 10.1186/s40425-018-0315-0.

17. Lan X., Li S., Gao H., et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther. 2017;10:919–26. Doi: 10.2147/OTT.S128825.

18. Long L., Zhang X., Chen F., et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes & Cancer. 2018;9:5–6. Doi: 10.18632/genesandcancer.180.

19. Mayadas T.N., Cullere X., Lowell C.A., et al. The multifaceted functions of neutrophils. Ann Rev Patol. 2014;9:181–218. Doi: 10.1146/annurev-pathol-020712-164023.

20. McLane L.M, Abdel-Hakeem M.S., Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Ann Rev Immunol. 2019. Doi: 10.1146/annurev-immunol-041015-055318.

21. Le M.I., Chen W., Lines J.L., et al. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74(7):1933–44. Doi: 10.1158/0008-5472.CAN-13-1506.

22. Mishalian I., Granot Z., Fridlender Z.G., et al. The diversity of circulating neutrophils in cancer. Immunobiol. 2017;222:82–8. Doi: 10.1016/j.imbio.2016.02.001.

23. Mizuno R., Kawada K., Itatani Y., et al. The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 2019;20:529. Doi:10.3390/ijms20030529.

24. Netea M.G., Joosten L.A., Latz E., et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:6284. Doi: 10.1126/science.aaf1098.

25. Personeni N., Giordano L., Abbadessa G., Porta C.,et al. Prognostic value of the neutrophil-to-lymphocyte ratio in the ARQ 197-215 second-line study for advanced hepatocellular carcinoma. Oncotarget. 2017;8:14408–15. Doi: 0.18632/oncotarget.14797.

26. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. Doi: 10.3389/fphys.2018.00113.

27. Sacdalan D.B., Lucero J.A., Sacdalan D.L. Prognostic utility of baseline neutrophil-to-lymphocyteratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 2018;11:955–65. Doi: 10.2147/OTT.S153290.

28. Scharping N.E., Menk A.V., Moreci R.S., et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity.2016;45(2):374–88. Doi: 10.1016/j.immuni.2016.07.009.

29. Schietinger A., Greenberg P.D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60. Doi: 10.1016/j.it.2013.10.001.

30. Schulick R., Edil B., et al. Cancer-promoting mechanisms of tumor-associated neutrophils. Am. J. Surg. 2017;214:938–44. Doi: 10.1016/j.amjsurg.2017.08.003.

31. Sharma P., Alison J.P. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. Doi: 10.1126/science.aaa8172.

32. Shaverdian N., Veruttipong D., Wang J., et al., Pretreatment immune parameters predict for overall survival and toxicity in early-stage non-small-cell lung cancer patients treated with stereotactic body radiation therapy. Clin Lung Cancer. 2016;17:39–46. Doi: 10.1016/j.cllc.2015.07.007.

33. Spiegel A., Brooks M.W., Houshyar S., et al. Neutrophils suppress Intraluminal NK cell-mediated tumor cell clearance and enhance Extravasation of disseminated carcinoma cells. Cancer Discov. 2016;6:630–49. Doi: 10.1158/2159-8290.CD-15-1157.

34. Sukumar M., Kishton R.J., Restifo N.P. Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 2017;46:14–22. Doi: 10.1016/j.coi.2017.03.011.

35. Swierczak F., Mouchemore K.A., Hamilton J.A., Anderson R.L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34:735–51. Doi: 10.1007/s10555-015-9594-9.

36. Tecchio C., Cassatella M.A. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016;28:119–28. Doi: 10.1016/j.smim.2016.04.003.

37. Vlkova M., Chovancova Z., Nechvatalova J., et al. Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J Immunol. 2019;202(1):93–104. Doi: 10.4049/jimmunol.1800102.

38. Wang Y., Ding Y., Guo N., Wang S. MDSCs: Key criminals of tumor pre-metastatic niche formation. 2019. Doi:10.3389/fimmu.2019.00172.

39. Zemans R.L. Neutrophil-mediated T-cell suppression in influenza: novel finding additional questions. Am J Respir Cell Mol Biol. 2018;58(4):492–99. Doi: 10.1165/rcmb.2017-0021OC.

40. Zhang X., Zhang W., Yuan X., et al. Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review). Int J Oncol. 2016;49:857–67. Doi: 10.3892/ijo.2016.3616.


Об авторах / Для корреспонденции


Автор для связи: А.В. Новик, к.м.н. старший науч. сотр. отдела онкоиммунологии, врач отделения химиотерапии и инновационных технологий НМИЦ онкологии им. Н.Н. Петрова; доцент кафедры онкологии, детской онкологии и лучевой терапии, Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург, Россия; e-mail: anovik@list.ru, ORCID: https://orcid.org/0000-0002-2430-7409
Адрес: 197758, Россия, Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68


Бионика Медиа