Ингибиторы PARP в персонализированном подходе к лечению кастрационно-резистентного рака предстательной железы: клиническое наблюдение


DOI: https://dx.doi.org/10.18565/pharmateca.2023.11.113-118

Грицкевич А.А., Байтман Т.П., Монаков Д.М., Русаков И.Г., Мишугин С.В.

1) Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского, Москва, Россия; 2) Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия; 3) Московский клинический научный центр им. А.С. Логинова ДЗМ, Москва, Россия; 4) Российское общество онкоурологов, Москва, Россия
Рак предстательной железы (РПЖ) является одним из наиболее распространенных злокачественных новообразований (ЗНО) как в мире, так и в России. Это заболевание является одной из ведущих причин онкологической смертности мужского населения.
В настоящее время патогенез РПЖ подробно изучен, что делает возможным в большинстве случаев успешное радикальное лечение, но в среднем у 10–20% пациентов постепенно развивается кастрационно-резистентный (КРРПЖ) и метастатический (мРПЖ) рак предстательной железы. В настоящее время активно изучаются механизмы, способствующие развитию РПЖ в отсутствие андрогенной стимуляции. Персонализированный подход к онкологии позволяет своевременно выявлять специфические мутации и верно подобирать наиболее эффективную при них терапию. В статье предпринята попытка суммировать актуальные данные об одном из таких лечебных подходов – ингибиторах PARP. Препараты этой группы наиболее эффективны в отношении ЗНО с мутациями в генах BRCA1/2 и успешно применяются также при раке яичников, молочной и поджелудочной желез.
Представленный клинический случай пациента Р. 67 лет с аденокарциномой (Gleason  7), у которого по результатам генетического исследования выявлены мутации BRCA2, иллюстрирует успешное применение олапариба при мКРРПЖ. Применение персонализированных тестов позволило сформировать четкие показания к применению ингибиторов PARP в лечении мКРРПЖ. Исследования новых направлений применения ингибиторов PARP актуальны в настоящее время.

Литература


1. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). М., 2022. 252 с.


2. Scher H.I., Morris M.J., Stadler W.M., et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34(12):1402–18. Doi: 10.1200/JCO.2015.64.2702.


3. Jun A., Zhang B., Zhang Z., et al. Novel Gene Signatures Predictive of Patient Recurrence‐Free Survival and Castration Resistance in Prostate Cancer. Cancers. 2021;13:917–44. Doi: 10.3390/cancers13040917.


4. Kirby M., Hirst C., Crawford E.D. Characterising the castration-resistant prostate cancer population: a systematic review. Int J ClinPract. 2011;65(11):1180–92. Doi: 10.1111/j.1742-1241.2011.02799.x.


5. Гафанов Р.А., Гармаш С.В., Кравцов И.Б., Фастовец С.В. Метастатический кастрационно-резистентный рак предстательной железы: современный взгляд на медикаментозную терапию и альтернативная регуляция опухолевых клеток. Онкоурология. 2018;14(1):107–16.


6. Quigley D.A., Dang H.X., Zhao S.G., et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758–69.e9. Doi: 10.1016/j.cell.2018.06.039.


7. Salameh A., Lee A.K., Cardo-Vila M., et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 2015;112:8403–408. Doi: 10.1073/pnas.1507882112.


8. Zhao S.G., Chen W.S., Li H., et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89. Doi: 10.1038/s41588-020-0648-8.


9. Chung J.H., Dewal N., Sokol E., et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO. Precis Oncol. 2019;3:PO.18.00283. Doi: 10.1200/PO.18.00283.


10. Pritchard C.C., Mateo J., Walsh M.F., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016;375(5):443–53. Doi: 10.1056/NEJMoa1603144.


11. Davey R.A., Grossmann M. Androgen receptor structure, function and biology: From bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.


12. Zarif J.C., Miranti C.K. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal. 2016;28(5):348–56. Doi: 10.1016/j.cellsig.


13. Hobisch A., Eder I.E., Putz T., et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–45.


14. Ueda T., Mawji N.R., Bruchovsky N., Sadar M.D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 2002;277(41):38087–94. Doi: 10.1074/jbc.M203313200.


15. Kim H.J., Lee W.J. Ligand-independent activation of the androgen receptor by insulin-like growth factor-I and the role of the MAPK pathway in skeletal muscle cells. Mol Cells. 2009;28(6):589–93. Doi: 10.1007/s10059-009-0167-z.


16. Kim H.J., Lee W.J. Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol Cells. 2009;28(3):189–94. Doi: 10.1007/s10059-009-0118-8.


17. Chandrasekar T., Yang J.C., Gao A.C., Evans C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 2015;4(3):365–80. Doi: 10.3978/j. issn.2223-4683.2015.05.02.


18. Maitland N.J. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel). 2021;13(2):327. Doi: 10.3390/cancers13020327.


19. Arap W., Pasqualini R., Costello J.F. Prostate Cancer Progression and the Epigenome. N. Engl. J. Med. 2020;383(23):2287–90. Doi: 10.1056/NEJMcibr2030475.


20. Ge R., Wang Z., Montironi R., et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020;31(4):470–79. Doi: 10.1016/j.annonc.2020.02.002.


21. Pomerantz M.M., Qiu X., Zhu Y., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52(8):790–99. Doi: 10.1038/s41588-020-0664-8.


22. Waddington C.H. The strategy of the genes: a discussion of some aspects of theoretical biology. London: George Allen & Unwin, 1957. Doi: 10.4324/9781315765471.


23. Castro E., Romero-Laorden N., Del Pozo A., et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol. 2019;37(6):490–503. Doi: 10.1200/JCO.18.00358.


24. Citarelli M., Teotia S., Lamb R.S. Evolutionary history of the poly-(ADP-ribose) polymerase gene family in eukaryotes. BMC. Evol Biol. 2010;10(1):308. Doi: 10.1186/1471-2148-10-308.


25. Долгашева Д.С., Певзнер А.М., Ибрагимова М.К. и др. Ингибиторы PARP1 в терапии рака молочной железы. Механизм действия и клиническое применение. Опухоли женской репродуктивной системы. 2020;16(1):55–64. Doi: 10.17650/1994-4098-2020-16-1-55-64.


26. Ефремова А.С., Шрам С.И., Мясоедов Н.Ф. Доксорубицин вызывает временную активацию процесса поли-АДФ-рибозилирования белков в клетках H9c2. Доклады Академии наук. 2015;464(6):74–9.


27. Langelier M.F., Pascal J.M. PARP-1 mechanism for coupling DNA damage detection to poly-(ADP-ribose) synthesis. Curr Opin Struc Biol. 2013;23(1):134–43. Doi: 10.1016/j.sbi.2013.01.003.


28. Alkhatib H.M., Chen D., Cherney B., et al. Cloning and expression of cDNA for human poly-(ADP-ribose) polymerase. Proc. NAS. 1987;84(5):1224–28. Doi: 10.1073/pnas.84.5.1224.


29. Konecny G.E., Kristeleit R.S. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Brit J Cancer. 2016;115(10):1157–73. Doi: 10.1038/bjc.2016.311.


30. Ramus S.J., Gayther S.A. The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol Oncol. 2009;3(2):138–50. Doi: 10.1016/j.molonc.2009.02.001.


31. Neuhausen S.L., Ozcelik H., Southey M.C., et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86. Doi: 10.1007/s10549-008-0153-8.


32. Tripathi A., Balakrishna P., Agarwal N. PARP inhibitors in castration-resistant prostate cancer. Cancer Treat Res Communicat. 2020;24:1–3. Doi: 10.1016/j.ctarc.2020.100199.


33. De Bono J.S., Mateo J., Fizazi K., et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2020;382:2091–102. Doi: 10.1056/NEJMoa1911440.


34. Abida W., Campbell D., Patnaik A., et al. Preliminary results from the TRITON2 study of rucaparib in patients (pts) with DNA damage repair (DDR)-deficient metastatic castration- resistant prostate cancer (mCRPC): updated analyses. Ann Oncol. 2019;30:V327–8. Doi: 10.1093/annonc/mdz248.


35. De Bono J.S., Mehra N., Higano C.S., et al. TALAPRO-1: a phase II study of talazoparib (TALA) in men with DNA damage repair mutations (DDRmut) and metastatic castration-resistant prostate cancer (mCRPC) – First interim analysis (IA). J Clin Oncol. 2020;38(119). Doi: 10.1200/JCO.2020.38.15_suppl.5566.


36. Smith M.R., Sandhu S.K., Kelly W.K., et al. Prespecified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD). Ann Oncol. 2019;30:V884–85. Doi: 10.1093/annonc/mdz394.


37. Marshall C.H., Fu W., Wang H., et al. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage. Prostat Cancer Prostat Dis. 2019;22(1):59–65. Doi: 10.1038/s41391-018-0086-1.


38. Mohler J.L., Antonarakis E.S. NCCN Guidelines Updates: Management of Prostate Cancer. J Natl Compr Canc Netw. 2019;17(5.5):583–86. Doi: 10.6004/jnccn.2019.5011.


39. URL: https://www.pharmjournal.ru/jour/announcement/view/413


40. Polkinghorn W.R., Parker J.S., Lee M.X., et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245–53. Doi: 10.1158/2159-8290.CD-13-0172.


41. Asim M., Tarish F., Zecchini H.I., et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017;8(1):374–84. Doi: 10.1038/s41467-017-00393-y.


Об авторах / Для корреспонденции


Автор для связи: Александр Анатольевич Грицкевич, д.м.н., зав. отделением хирургического лечения урологических заболеваний, профессор 
образовательного отдела, Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского; профессор кафедры урологии и оперативной нефрологии с курсом онкоурологии, Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия; grekaa@mail.ru


ORCID / eLibrary SPIN:
А.А. Грицкевич (A.A. Gritskevich), https://orcid.org/0000-0002-5160-925X; eLibrary SPIN: 2128-7536
Т.П. Байтман (T.P. Baitman), https://orcid.org/0000-0002-3646-1664; eLibrary SPIN: 4684-3230
Д.М. Монаков (D.M. Monakov), https://orcid.org/0000-0002-9676-1802; eLibrary SPIN: 2432-3491
С.В. Мишугин (S.V. Mishugin), https://orcid.org/0000-0002-6751-2399; eLibrary SPIN: 386407
И.Г. Русаков (I.G. Rusakov), https://orcid.org/0000-0002-0945-2498 


Похожие статьи


Бионика Медиа