Фармакотерапевтические аспекты гестационного сахарного диабета на фоне нарушения материнского иммунитета


DOI: https://dx.doi.org/10.18565/pharmateca.2023.4-5.127-132

Кязимова А.У.к., Полухова Ш.М.к.

Азербайджанский медицинский университет, Баку, Азербайджан
В этой статье рассмотрен иммунный статус матери при гестационном сахарном диабете (ГСД). Нормальная беременность представляет собой контролируемое состояние иммунной системы на ранней стадии беременности. Различные иммунологические медиаторы адаптируются к состоянию беременности, все это влияет на здоровье матери и плода. ГСД, определяемый как нарушение толерантности к глюкозе любой степени во время беременности, представляет собой серьезное акушерское осложнение, поражающее примерно 5–10% беременных во всем мире. Гипергликемия вызывает иммунную дисфункцию, отрицательно влияя на хемотаксис нейтрофилов, функцию макрофагов и фагоцитарные реакции, делая пациентов с диабетом более восприимчивыми к инфекциям и связанным с ними сопутствующими заболеваниями. Состояние беременности наряду с иммунологическими изменениями, дисбаланс врожденных и адаптивных клеточных реакций представляют дополнительные риски для здоровья. Инсулин играет незаменимую роль в лечении гипергликемии, возникающей в различных условиях, в т.ч. при диабете I и II типов, инсулин оказывает антиапоптотическое действие и снижает экспрессию провоспалительных цитокинов в эндотоксемических макрофагах человека. Метформин или производные сульфонилмочевины также могут быть рассмотрены для лечения ГСД. Метформин подавляет иммунные ответы в основном за счет своего прямого влияния на клеточные функции различных типов иммунных клеток. Глибурид усиливает противовоспалительный ответ и синергизирует с ретиноевой кислотой. Лучшее понимание того, как возникают иммунные дисфункции во время гипергликемии, может привести к новым методам лечения и профилактики инфекционных заболеваний и сопутствующих заболеваний СД2, тем самым улучшая результаты лечения инфекционных заболеваний у пациентов с СД2. Эти результаты требуют дальнейшего изучения роли таких препаратов, как инсулин, метформин и глибурид, в иммунорегуляции патофизиологии ГСД.

Литература


1. Mor G., Cardenas I., Abrahams V., et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–7. Doi: 10.1111/j.1749-6632.2010.05938.x.


2. Zare F., Seifati S., Mahdi Dehghan-Manshadi M. Preimplantation Factor (PIF): a peptide with various functions. JBRA. Assist Reprod. 2020;24(2):214–18. Doi:10.5935/1518-0557.20190082.


3. Billington W. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to peter Medawar. J Reprod Immunol. 2003;60:1–11. Doi: 10.1016/S0165-0378(03)00083-4.


4. Deshmukh H., Way S. Immunological basis for recurrent fetal loss and pregnancy complications. Ann Rev Pathol. 2019;14:185–210. Doi: 10.1146/annurev-pathmechdis-012418-012743.


5. Kampmann U., Madsen R., Skajaa O., et al. Gestational diabetes: A clinical update. World J Diab. 2015;6:1065–72. Doi: 110.4239/wjd.v6.i8.1065.


6. Berbudi A., Rahmadika N., Tjahjadi A.I., et al. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev. 2020;16:442–49. Doi: 10.2174/1573399815666191024085838.


7. Tessaro G., Ayala S., Nolasco L., et al. Insulin influences LPS-Induced TNF-α and IL-6 release through distinct pathways in mouse macrophages from different compartments. Cell Physiol Biochem. 2017;42(5):2093–104. Doi: 10.1159/000479904.


8. Hotamisligil S., Shargill S., Spiegelman M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. Doi: 10.1126/science.7678183.


9. Halberg N., Wernstedt-Asterholm I., Scherer E. The adipocyte as an endocrine cell. Endocrinol Metab. Clin North Am. 2008;37(3):753–68. doi: 10.1016/j.ecl.2008.07.002.


10. Ferracini M., Martins O., Campos M., et al. Impaired phagocytosis by alveolar macrophages from diabetic rats is related to the deficient coupling of LTs to the Fc γ R signaling cascade. Mol Immunol. 2010;47(11–12):1974–80. Doi: 10.1016/j.molimm.2010.04.018.


11. Ruholamin S., Eshaghian S., Allame Z. Neonatal outcomes in women with gestational diabetes mellitus treated with metformin in compare with insulin: A randomized clinical trial. J Res Med Sci. 2014;19:970–75.


12. American Diabetes Association. Standards of medical care in diabetes-2014. Diab Care. 2014;37(Suppl. 1):14–80.


13. Crowther A., Hiller E., Moss R., et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352:2477–86. Doi: 10.1056/NEJMoa042973.


14. Stenninger E., Flink R., Eriksson B., et al. Long term neurological dysfunction and neonatal hypoglycaemia after diabetic pregnancy. Arch Dis Child Fetal Neonatal Ed. 1998;79:174–79. Doi: 10.1136/fn.79.3.F174.


15. Daskalakis G., Marinopoulos S., Krielesi V., et al. Placental pathology in women with gestational diabetes Comparative Study. Acta Obstet Gynecol Scand. 2008;87(4):403–7. Doi: 10.1080/00016340801908783.


16. Correa-Silva S., Alencar A., Moreli J., et al. Hyperglycemia induces inflammatory mediators in the human chorionic villous. Cytokine. 2018;111:41–8. Doi: 10.1016/j.cyto.2018.07.020.


17. Angelo A., Neves C., Lobo T., et al. Monocyte profile in peripheral blood of gestational diabetes mellitus patients. Cytokine. 2018;107:79–84. Doi: 10.1016/j.cyto.2017.11.017.


18. Aktulay A., Engin-Ustun Y., Ozkan M., et al. Gestational diabetes mellitus seems to be associated with inflammation. Acta Clin Croat. 2015;54:475–78.


19. Liu W., Lou X., Zhang Z., et al. Association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, mean platelet volume with the risk of gestational diabetes mellitus. Gynecol Endocrinol. 2020;37(2):1–3. Doi: 10.1080/09513590.2020.1804549.


20. De Castro C., Franca E., Fagundes D., et al. Characterization of natural killer cells and cytokines in maternal placenta and fetus of diabetic mothers. J Immunol Res. 2016;2016:7154524. Doi: 10.1155/2016/7154524.


21. Blumer I., Hadar E., Hadden D., et al. Diabetes and pregnancy: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4227–49. Doi: 10.1210/jc.2013-2465.


22. Plitas G., Rudensky A. Regulatory T cells: Differentiation and function. Cancer Immunol Res. 2016;4:721–25. Doi: 10.1158/2326-6066.CIR-16-0193.


23. La Rocca C., Carbone F., Longobardi S., et al. The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus Immunol Lett. 2014;162:41–8. Doi: 10.1016/j.imlet.2014.06.013.


24. Schober L., Radnai D., Spratte J., et al. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin Exp Immunol. 2014;177:76–85. Doi: 10.1111/cei.12300.


25. Ghanim H., Mohanty P., Deopurkar R., et al. Acute modulation of toll-like receptors by insulin. Diab Care. 2008;31:1827–31. Doi: 10.2337/dc08-0561.


26. Van Niekerk G., Christowitz C., Conradie D., et al. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev. 2020;52:34–44. Doi: 10.1016/j.cytogfr.2019.11.006.


27. Leffler M., Hrach T., Stuerzl M., et al. Insulin attenuates apoptosis and exerts anti-inflammatory effects in endotoxemic human macrophages. J Surg Res. 2007;143:398–406. Doi: 10.1016/j.jss.2007.01.030.


28. Dandona P., Ghanim H., Green K., et al. Insulin infusion suppresses while glucose infusion induces Toll-like receptors and high-mobility group-B1 protein expression in mononuclear cells of type 1 diabetes patients. Am J Physiol Metab. 2013;304:E810–18. Doi: 10.1152/ajpendo.00566.2012.


29. Petersen M., Shulman G. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. Doi: 10.1152/physrev.00063.2017.


30. Vanky E., Zahlsen K., Spigset O., et al. Placental passage of metformin in women with polycystic ovary syndrome. Fertil. Steril. 2005;83:1575–78. Doi: 10.1016/j.fertnstert.2004.11.051.


31. Singh A., Singh R. Metformin in gestational diabetes: An emerging contender. Indian. J Endocrinol Metab. 2015;19:236–44. Doi: 10.4103/2230-8210.149317.


32. Schuiveling M., Vazirpanah N., Radstake T., et al. Metformin, a new era for an old drug in the treatment of immune mediated disease. Curr Drug Targets. 2018;19:945–59. Doi: 10.2174/1389450118666170613081730.


33. Nath N., Khan M., Paintlia M., et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol. 2009;182(12):8005–14. Doi: 10.4049/jimmunol.0803563.


34. Shi W., Xiao D., Wang L., et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell. Death Dis. 2012;3:e275. Doi: 10.1038/cddis.2012.13.


35. Jing Y., Wu F., Li D. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256–64. Doi: 10.1016/j.mce.2017.09.025.


36. Vasamsetti S., Karnewar S., Kanugula A., et al. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diab. 2015;64(6):2028–41. Doi: 10.2337/db14-1225.


37. Krysiak R., Gdula-Dymek A., Okopien B. Monocyte-suppressing effect of high-dose metformin in fenofibrate-treated patients with impaired glucose tolerance. Pharmacol Rep. 2013;65(5):1311–16. Doi: 10.1016/S1734-1140(13)71489-0.


38. Cameron A., Morrison V., Levin D., et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–65. Doi: 10.1161/CIRCRESAHA.116.308445.


39. Xiao H., Ma X., Feng W., et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504–13. Doi: 10.1093/cvr/cvq066.


40. Ursini F., Russo E., Pellino G., et al. Metformin and Autoimmunity: A “New Deal” of an Old Drug. Front Immunol. 2018;9:1236. Doi: 10.3389/fimmu.2018.01236.


41. Refuerzo J. Oral hypoglycemic agents in pregnancy. Obstet Gynecol Clin North Am. 2011;38:227–34. Doi: 10.1016/j.ogc.2011.02.013.


42. Gui J., Liu Q., Feng L. Metformin vs insulin in the management of gestational diabetes. A meta-analysis. PLoS One. 2013;8:e64585. Doi: 10.1371/journal.pone.0064585.


43. Glueck C., Goldenberg N., Pranikoff J., et al. Height, weight, and motor-social development during the first 18 months of life in 126 infants born to 109 mothers with polycystic ovary syndrome who conceived on and continued metformin through pregnancy. Hum Reprod. 2004;19:1323–30. doi: 10.1093/humrep/deh263.


44. Lin Y., Liu P., Pook K., et al. Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci Rep. 2018;8:834. Doi: 10.1038/s41598-017-18785-x.


45. Moore L., Clokey D. Rappaport V. Metformin compared with glyburide in gestational diabetes: A randomized controlled trial. Obstet Gynecol. 2010;115:55–9. Doi: 10.1097/AOG.0b013e3181c52132.


Об авторах / Для корреспонденции


Автор для связи: Афак Улдус кызы Кязимова, к.м.н., ассистент кафедры фармакологии Азербайджанский медицинский университет, Баку, Азербайджан; afaq_kazimova@list.ru; ORCID: https://orcid.org/0000-0003-3358-6709 


Похожие статьи


Бионика Медиа