Фармакогенетические маркеры безопасности галоперидола у подростков с острым психотическим эпизодом


DOI: https://dx.doi.org/10.18565/pharmateca.2023.4-5.121-126

Иващенко Д.В., Кравченко А.Ю., Хоанг С.З., Буромская Н.И., Шиманов П.В., Дейч Р.В., Настович М.И., Акмалова К.А., Качанова А.А, Савченко Л.М., Шевченко Ю.С., Сычёв Д.А.

1) Российская медицинская академия непрерывного профессионального образования, Москва, Россия; 2) Пензенский государственный университет, Медицинский институт, Пенза, Россия; 3) Научный центр психического здоровья, Москва, Россия; 4) Научно-практический центр психического здоровья детей и подростков им. Г.Е. Сухаревой, Москва, Россия
Актуальность. Фармакогенетическое тестирование считается эффективным методом прогноза безопасности фармакотера-пии. В настоящее время некоторые антипсихотики могут быть назначены с учетом результатов генотипирования, например галоперидол. Фармакогенетика безопасности галоперидола для подростков с острым психотическим эпизодом изучена в настоящий момент мало.
Цель исследования: выявление фармакогенетических предикторов нежелательных реакций галоперидола у подростков с острым психотическим эпизодом.
Методы. В проспективное обсервационное исследование были включены 56 подростков с диагнозом «острое полиморфное психотический расстройство». Наблюдение за пациентами проводилось в течение 14 дней. Все пациенты получали галоперидол в качестве основного вида фармакотерапии. Безопасность психофармакотерапии оценивалась при помощи шкал UKU Side Effects Rating Scale (UKU SERS), Sympson-Angus Scale (SAS), Barnes Akathisia rating scale (BARS). Полиморфные варианты генов CYP3A4*22 (rs2740574), CYP3A5*3 (6986A>G, rs7776746), CYP2D6*4,*9,*10 (rs3892097, rs1065852), ABCB1 1236C>T (rs1128503), 2677G>T/A (rs2032582), 3435C>T (rs1045642), COMT rs4680 (G>A – Val158Met), DRD3 rs6280 (C>T), DRD3 rs324026 (C>T), HTR2A rs6313 (T102C), ZNF804A rs1344706 (G>T), ANKS1B rs7968606 (C>T) определяли методом полимеразной цепной реакции (ПЦР) в реальном времени.
Результаты. Носительство полиморфного варианта COMT rs4680 (аллель Met) ассоциировалось с меньшей выраженностью нежелательных реакций со стороны психики. Наличие полиморфизмов HTR2A rs6313 и ZNF804A rs1344706 значимо ассоциировано с большим баллом шкалы UKU SERS. Носители полиморфного варианта HTR2A rs6313 (генотипы TC+CC) чаще жаловались на развитие тремора (37,2 против 0%, p=0,009). Носительство ABCB1 1236C>T и 2677G>T/A чаще ассоциировалось с наличием ортостатического головокружения (35 против 6,3%; p=0,028, ввиду неравновесного сцепления данные совпадают для обоих полиморфных вариантов). Частота развития ортостатического головокружения была значимо выше у носителей полиморфизма ZNF804A rs1344706 (37,5 против 12,5%; p=0,037). У носителей полиморфизмов DRD3 rs6280 и rs324026 реже развивалось «увеличение интенсивности сновидений».
Заключение. Увеличение риска нежелательных реакций на психофармакотерапию с использованием галоперидола наблюдалось при носительстве полиморфных вариантов HTR2A rs6313 (генотипы TC+CC), ABCB1 1236C>T и 2677G>T/A, ZNF804A rs1344706. Установлено, что носительство COMT rs4680 (аллель Met), DRD3 rs6280 и rs324026 ассоциировалось с меньшей выраженностью нежелательных реакций по сравнению с «дикими» генотипами.

Литература


1. Sakamoto K. Categorical and dimensional diagnostic approach to acute psychosis in view of operational diagnostic criteria. Seishin Shinkeigaku Zasshi. 2011;113(12):1228–34. Japanese.


2. Lieberman J.A., Small S.A., Girgis R.R. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am J Psychiatry. 2019;176(10):794–810. Doi: 10.1176/appi.ajp.2019.19080865.


3. Thomas S.P., Nandhra H.S., Singh S.P. Pharmacologic treatment of first-episode schizophrenia: a review of the literature. Prim Care Companion CNS Disord. 2012;14(1). Doi: 10.4088/PCC.11r01198.


4. de Araujo A.N., de Sena E.P., de Oliveira I.R., Juruena M.F. Antipsychotic agents: efficacy and safety in schizophrenia. Drug Healthc Patient Saf. 2012;4:173–80. Doi: 10.2147/DHPS.S37429.


5. Hanafi I., et al. Haloperidol (route of administration) for people with schizophrenia. Cochrane Database of Systematic Reviews. 2017. Doi: 10.1002/14651858.CD012833.


6. Kishi T., Ikuta T., Matsunaga S., et al. Comparative efficacy and safety of antipsychotics in the treatment of schizophrenia: a network meta-analysis in a Japanese population. Neuropsychiatr Dis Treat. 2017;11;13:1281–302. Doi: 10.2147/NDT.S134340.


7. Adams C.E., Bergman H., Irving C.B., Lawrie S. Haloperidol versus placebo for schizophrenia. Cochrane Database Syst Rev. 2013;(11):CD003082. Doi: 10.1002/14651858.


8. van Westrhenen R., Aitchison K.J., Ingelman-Sundberg M., Jukic M.M. Pharmacogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Front Psychiatry. 2020;11:94. Doi: 10.3389/fpsyt.2020.00094.


9. Zhang J.P., Malhotra A.K. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol. 2011;7(1):9–37. Doi: 10.1517/17425255.2011.532787.


10. Ayano G., Psychotropic Medications Metabolized by Cytochromes P450 (CYP) 2D6 Enzyme and Relevant Drug Interactions. Clin. Pharmacol. Biopharm. 2016;5:4. Doi: 10.4172/2167-065x.1000162.


11. Saiz-Rodriguez M., et al. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin Pharmacol Toxicol. 2018;123(4):474–85. Doi: 10.1111/bcpt.13031.


12. Zastrozhin M. S., et al. Association between polymorphism gene ABCB1, encodes glycoprotein P, and efficacy and safety profile of haloperidol in patients with alcohol addiction. Rudn J Med. 2017;21(1):42–50 Doi: 10.22363/2313-0245-2017-21-1-42-50.


13. Tardy M., Huhn M., Kissling W., et al. Haloperidol versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev. 2014;9;(7):CD009268. Doi: 10.1002/14651858.CD009268.pub2.


14. Pouget J.G., Shams T.A., Tiwari A.K., Muller D.J.Pharmacogenetics and outcome with antipsychotic drugs. Dialogues Clin Neurosci. 2014;16(4):555–66. Doi: 10.31887/DCNS.2014.16.4/jpouget.


15. Tyler M.W., Zaldivar-Diez J., Haggarty S.J. Classics in Chemical Neuroscience: Haloperidol. ACS Chem Neurosci. 2017;15;8(3):444–53. Doi: 10.1021/acschemneuro.7b00018.


16. Zai C.C., De Luca V., Hwang R.W., et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007;12(9):794–95. Doi: 10.1038/sj.mp.4002023.


17. Leucht S., Kane J.M., Etschel E., et al. Linking the PANSS, BPRS, and CGI: clinical implications. Neuropsychopharmacology. 2006;31(10):2318–25. Doi: 10.1038/sj.npp.1301147.


18. Yoshida K., Muller D.J. Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. Mol Neuropsychiatry. 2020;5:1–26. Doi: 10.1159/000492332.


19. Sychev D.A., Zastrozhin M.S., Smirnov V.V., et al. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction. Pharmgenomics Pers Med. 2016;14;9:89–95. Doi: 10.2147/PGPM.S110385.


20. Lee J.H., Byon H.J., Choi S., et al. Safety and Efficacy of Off-label and Unlicensed Medicines in Children. J Korean Med Sci. 2018;19;33(37):e227. Doi: 10.3346/jkms.2018.33.e227.


21. Korno K.T., Aagaard L. Off-Label Prescribing of Antipsychotics in a Danish Child and Adolescent Mental Health Center: A Register-Based Study. J Res Pharm Pract. 2018;7(4):205–9. Doi: 10.4103/jrpp.JRPP_18_42.


22. Barnes T.R. The Barnes Akathisia Rating Scale--revisited. J Psychopharmacol. 2003;17(4):365–70. Doi: 10.1177/0269881103174013.


23. Zastrozhin M.S., Brodyansky V.M., Skryabin V.Y., et al. Pharmacodynamic genetic polymorphisms affect adverse drug reactions of haloperidol in patients with alcohol-use disorder. Pharmgenomics Pers Med. 2017;7;10:209–15. Doi: 10.2147/PGPM.S140700.


24. Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin Neurosci. 2002;56(4):345–54. Doi: 10.1046/j.1440-1819.2002.01022.x.


25. Nocjar C., Roth B.L., Pehek E. Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience. 2002;111;1: 163–76. Doi: 10.1016/S0306-4522(01)00593-0.


26. Antonio D., Diana D.R. HTR2A Gene Variants and Psychiatric Disorders: A Review of Current Literature and Selection of SNPs for Future Studies. Curr Med Chem. 2007;14;19:2053–69. Doi: 10.2174/092986707781368450.


27. Zabotina et al. Serotonin 2A receptor (HTR2A) gene polymorphisms RS6311 and RS6313 modulate mRNA and protein expression in peripheral blood leukocytes during antipsychotic administration. Tsitologiya. 2018;60(5):381–89. Doi: 10.31116/tsitol.2018.05.08.


28. Changasi A.H., Shams T.A., Pouget J.G., Muller D.J. Genetics of antipsychotic drug outcome and implications for the clinician: into the limelight. Transl Dev Psychiatry. 2014;2;1:24663. Doi: 10.3402/tdp.v2.24663.


Об авторах / Для корреспонденции


Автор для связи: Дмитрий Владимирович Иващенко, д.м.н., и.о. зав. кафедрой детской психиатрии и психотерапии, ведущий науч. сотр. НИИ молекулярной и персонализированной терапии, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; dvi1991@yandex.ru


ORCID:
М.И. Настович (M.I. Nastovich), https://orcid.org/0000-0002-7727-7839 
Д.В. Иващенко (D.V. Ivashchenko), https://orcid.org/0000-0002-2295-7167
К.А. Акмалова (K.A. Akmalova), https://orcid.org/0000-0003-3505-8520 
А.Ю. Кравченко (A.Yu. Kravchenko), https://orcid.org/0009-0006-2173-657X 
А.А. Качанова (A.A Kachanova), https://orcid.org/0000-0003-3194-4410 
С.З. Хоанг (S.Z. Khoang), https://orcid.org/0000-0002-1647-2788 
Л.М. Савченко (L.M. Savchenko), https://orcid.org/0000-0002-2411-3494 
Н.И. Буромская (N.I. Buromskaya), https://orcid.org/0000-0003-0991-4960 
Ю.С. Шевченко (Yu.S. Shevchenko), https://orcid.org/0000-0001-7790-9595 
П.В. Шиманов (P.V. Shimanov), https://orcid.org/0000-0002-9050-4776 
Д.А. Сычёв (D.A. Sychev), https://orcid.org/0000-0002-4496-3680 


Похожие статьи


Бионика Медиа