Роль васпина в жизнедеятельности организма


DOI: https://dx.doi.org/10.18565/pharmateca.2023.3.22-33

Лопатин Я.Р., Толочко В.О., Минаков А.А., Салухов В.В.

Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург, Россия
Васпин – гормон жировой ткани гликопротеиновой природы, относящийся к группе ингибиторов сериновых протеаз. На сегодняшний день опубликована масса статей, описывающих структуру васпина, его доказанные и предполагаемые функции, механизмы его воздействия на клетки-мишени, а также изменение его концентрации при тех или иных патологических состояни-ях. Однако в настоящее время не существует структурированной работы, в которой была бы обобщена и систематизирована вся доступная на сегодня информация о данном адипокине. Именно эту задачу мы ставим перед собой в данном исследовании. В работе собраны результаты всех имеющихся на сегодня исследований, посвященных изучению васпина. В некоторых случаях приведенные источники сообщают о противоречивых результатах, что указывает на необходимость дальнейших изысканий.

Литература


1. Pi-Sunyer F. The Obesity Epidemic: Pathophysiology and Consequences of Obesity. Obes Res. 2002;10(S12):97S–104S. Doi: 10.1038/oby.2002.202.


2. Caballero B. Humans against Obesity: Who Will Win? Adv Nutr. 2019;10(suppl_1):S4–S9. Doi: 10.1093/advances/nmy055.


3. Fasshauer M., Bluher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015;36(7):461–70. Doi: 10.1016/j.tips.2015.04.014.


4. Gelsinger C., Tschoner A., Kaser S., Ebenbichler C. Adipokine update – neue Moleküle, neue Funktionen. Wien Med Wochenschr. 2010;160(15-16):377–90. Doi: 10.1007/s10354-010-0781-6.


5. Smekal A., Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(1):31–40. Doi: 10.5507/bp.2017.002.


6. Fietta P., Delsante G. Focus on adipokines. Theor Biol Forum. 2013;106(1–2):103–29.


7. Korek E., Krauss H. Novel adipokines: their potential role in the pathogenesis of obesity and metabolic disorders. Postepy Hig Med Dosw (Online). 2015;69:799–810. Doi: 10.5604/17322693.1161415.


8. Hida K., Wada J., Eguchi J., et al. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005;102(30):10610–15. Doi: 10.1073/pnas.0504703102.


9. Heit C., Jackson B., McAndrews M., et al. Update of the human and mouse SERPINgene superfamily. Hum Genomics. 2013;7(1). Doi: 10.1186/1479-7364-7-22.


10. Oertwig K., Ulbricht D., Hanke S., et al. Glycosylation of human vaspin (SERPINA12) and its impact on serpin activity, heparin binding and thermal stability. Biochimt Biophys Acta Proteins Proteom. 2017;1865(9):1188–94. Doi: 10.1016/j.bbapap.2017.06.020.


11. Nakatsuka A., Wada J., Iseda I., et al. Vaspin Is an Adipokine Ameliorating ER Stress in Obesity as a Ligand for Cell-Surface GRP78/MTJ-1 Complex. Diabetes. 2012;61(11):2823–32. Doi: 10.2337/db12-0232.


12. Casas C. GRP78 at the Centre of the Stage in Cancer and Neuroprotection. Front Neurosci. 2017;11. Doi: 10.3389/fnins.2017.00177.


13. Brocchieri L., Conway de Macario E., Macario A. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol. 2008;8:19. Doi: 10.1186/1471-2148-8-19.


14. Yang J., Nune M., Zong Y., et al. Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP. Structure. 2015;23(12):2191–203. Doi: 10.1016/j.str.2015.10.012.


15. Mayer M., Gierasch L. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem. 2019;294(6):2085–97. Doi: 10.1074/jbc.REV118.002810


16. Hendershot L., Valentine V., Lee A., Morris S., Shapiro D. Localization of the Gene Encoding Human BiP/GRP78, the Endoplasmic Reticulum Cognate of the HSP70 Family, to Chromosome 9q34. Genomics. 1994;20(2):281–84. Doi: 10.1006/geno.1994.1166.


17. Haas I. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia. 1994;50(11-12):1012–1020. Doi: 10.1007/BF01923455.


18. Lee Y., Brewer J., Hellman R., Hendershot L. BiP and Immunoglobulin Light Chain Cooperate to Control the Folding of Heavy Chain and Ensure the Fidelity of Immunoglobulin Assembly. Mol Biol Cell. 1999;10(7):2209–19. Doi: 10.1091/mbc.10.7.2209.


19. Young J. Mechanisms of. the Hsp70 chaperone systemThis paper is one of a selection of papers published in this special issue entitled «Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting – Protein Folding: Principles and Diseases» and has undergone the Journal’s usual peer review process. Biochem Cell Biol. 2010;88(2):291–300. Doi: 10.1139/o09-175.


20. Lee A. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001;26(8):504–10. Doi: 10.1016/s0968-0004(01)01908-9.


21. Sano R., Reed J. ER stress-induced cell death mechanisms. Biochim Biophys Acta - Molecular Cell Research. 2013;1833(12):3460–70. Doi: 10.1016/j.bbamcr.2013.06.028.


22. Walter P., Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334(6059):1081–86. Doi: 10.1126/science.1209038.


23. Diehl J., Fuchs S., Koumenis C. The Cell Biology of the Unfolded Protein Response. Gastroenterology. 2011;141(1):38–41.e2. Doi: 10.1053/j.gastro.2011.05.018.


24. Xia S., Duan W., Liu W., et al. GRP78 in lung cancer. J Transl Med. 2021;19(1). Doi: 10.1186/s12967-021-02786-6.


25. Suzuki C., Bonifacio J., Lin A., et al. Regulating the retention of T-cell receptor α chain variants within the endoplasmic reticulum: Ca2+-dependent association with BiP. J Cell Biol. 1991;1(4):86. Doi: 10.1016/0962-8924(91)90033-6.


26. Nakatsuka A., Wada J., Iseda I., et al. Visceral Adipose Tissue-derived Serine Proteinase Inhibitor Inhibits Apoptosis of Endothelial Cells as a Ligand for the Cell-Surface GRP78/Voltage-dependent Anion Channel Complex. Circ Res. 2013;112(5):771–80. Doi: 10.1161/CIRCRESAHA.111.300049.


27. Birukova A., Singleton P., Gawlak G., et al. GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids. Mol Biol Cell. 2014;25(13):2006–16. Doi: 10.1091/mbc.e13-12-0743.


28. Philippova M., Ivanov D., Joshi M., et al. Identification of Proteins Associating with Glycosylphosphatidylinositol- Anchored T-Cadherin on the Surface of Vascular Endothelial Cells: Role for Grp78/BiP in T-Cadherin-Dependent Cell Survival. Mol Cell Biol. 2008;28(12):4004–17. Doi: 10.1128/MCB.00157-08.


29. McCubrey J., Steelman L., Chappell W., et al. Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response. Oncotarget. 2012;3(9):954–87. Doi: 10.18632/oncotarget.652.


30. Karar J., Maity A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci. 2011;4. Doi: 10.3389/fnmol.2011.00051.


31. Wullschleger S., Loewith R., Hall M. TOR Signaling in Growth and Metabolism. Cell. 2006;124(3):471–84. Doi: 10.1016/j.cell.2006.01.016.


32. Yang F., Xue L., Han Z., et al. Vaspin alleviates myocardial ischaemia/reperfusion injury via activating autophagic flux and restoring lysosomal function. Biochem Biophys Res Commun. 2018;503(2):501–7. Doi: 10.1016/j.bbrc.2018.05.004.


33. Li H., Peng W., Zhuang J., et al. Vaspin attenuates high glucose-induced vascular smooth muscle cells proliferation and chemokinesis by inhibiting the MAPK, PI3K/Akt, and NF-κB signaling pathways. Atherosclerosis. 2013;228(1):61–8. Doi: 10.1016/j.atherosclerosis.2013.02.013.


34. Zhu X., Zhang L., Chen Y., et al. Vaspin protects mouse mesenchymal stem cells from oxidative stress-induced apoptosis through the MAPK/p38 pathway. Mol Cell Biochem. 2019;462(1–2):107–14. Doi: 10.1007/s11010-019-03614-8.


35. Misra U., Pizzo S. Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol Ther. 2010;9(2):142–52. Doi: 10.4161/cbt.9.2.10422.


36. Guo R., Xu W., Lin J., et al. Activation of the p38 MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep. 2013;8(2):603-–8. Doi: 10.3892/mmr.2013.1554.


37. Kelber J., Panopoulos A., Shani G., et al. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene. 2009;28(24):2324–36. Doi: 10.1038/onc.2009.97


38. Misra U., Deedwania R., Pizzo S. Activation and Cross-talk between Akt, NF-κB, and Unfolded Protein Response Signaling in 1-LN Prostate Cancer Cells Consequent to Ligation of Cell Surface-associated GRP78. J Biol Chem. 2006;281(19):13694–707. Doi: 10.1074/jbc.M511694200.


39. He B., Luo B., Chen Q., Zhang L. Cigarette smoke extract induces the expression of GRP78 in A549 cells via the p38/MAPK pathway. Mol Med Rep. 2013;8(6):1683–88. Doi: 10.3892/mmr.2013.1724.


40. Kyriakis J., Avruch J. Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiol Rev. 2012;92(2):689–737. Doi: 10.1152/physrev.00028.2011


41. Yuan L., Dai X., Fu H., et al. Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol. 2018;835:132–39. Doi: 10.1016/j.ejphar.2018.07.052


42. Li X., Ke X., Li Z., Li B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun. 2019;514(1):1–8. Doi: 10.1016/j.bbrc.2019.04.110


43. Zhang G.Z., Zhang K., Yang S.Q., et al. VASPIN reduces inflammation and endoplasmic reticulum stress of renal tubular epithelial cells by inhibiting HMGB1 and relieves renal ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci. 2020 Sep;24(17):8968–77. Doi: 10.26355/eurrev_202009_22839.


44. Nicholson T., Church C., Tsintzas K., et al. Vaspin promotes insulin sensitivity in elderly muscle and is upregulated in obesity. J Endocrinol. 2019;241(1):31–43. Doi: 10.1530/JOE-18-0528


45. Waluga M., Kukla M., Zorniak M., et al. Vaspin mRNA levels in the liver of morbidly obese women with nonalcoholic fatty liver disease. Pol J Pathol. 2017;2:128–37. Doi: 10.5114/PjP.2017.69688.


46. Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs. 2008;17(3):327–33. Doi: 10.1517/13543784.17.3.327


47. Kloting N., Berndt J., Kralisch S., Kovacs P., Fasshauer M., Schon M. et al. Vaspin gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Biochem Biophys Res Commun. 2006;339(1):430–36. Doi: 10.1016/j.bbrc.2005.11.039.


48. Mm W., Fan J., Khor S., Song M., Hong W., Dai X. Serum vaspin levels and vaspin mRNA expression in subcutaneous adipose tissue in women with gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol. 2014;182:98–101. Doi: 10.1016/j.ejogrb.2014.09.008.


49. Korner A., Neef M., Friebe D., et al. Vaspin is related to gender, puberty and deteriorating insulin sensitivity in children. Int J Obes (Lond). 2010;35(4):578–86. Doi: 10.1038/ijo.2010.196.


50. Weiner J., Rohde K., Krause K., et al. Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation. Mol Metab. 2017;6(6):482–93. Doi: 10.1016/j.molmet.2017.03.004


51. Breitfeld J., Tonjes A., Gast M., et al. Role of Vaspin in Human Eating Behaviour. PLoS ONE. 2013;8(1):e54140. Doi: 10.1371/journal.pone.0054140.


52. Kurowska P., Mlyczynska E., Barbe A., et al. Vaspin in the pig ovarian follicles: expression and regulation by different hormones. Reproduction. 2019;158(2):137–48. Doi: 10.1530/REP-19-0034.


53. Caminos J.E., Bravo S.B., Garces M.F., et al. Vaspin and amylin are expressed in human and rat placenta and regulated by nutritional status. Histol Histopathol. 2009 Aug;24(8):979–90. Doi: 10.14670/HH-24.979.


54. Youn B., Kloting N., Kratzsch J., et al. Serum Vaspin Concentrations in Human Obesity and Type 2 Diabetes. Diabetes. 2008;57(2):372–77. Doi: 10.2337/db07-1045.


55. Teshigawara S., Wada J., Hida K., et al. Serum Vaspin Concentrations Are Closely Related to Insulin Resistance, and rs77060950 atSERPINA12Genetically Defines Distinct Group with Higher Serum Levels in Japanese Population. J Clin Endocrinol Metab. 2012;97(7):E1202–7. Doi: 10.1210/jc.2011-3297.


56. Feng R., Li Y., Wang C., et al. Higher vaspin levels in subjects with obesity and type 2 diabetes mellitus: A meta-analysis. Diabetes Res Clin Pract. 2014;106(1):88–94. Doi: 10.1016/j.diabres.2014.07.026.


57. Liu Y., Gong M., Liu S., et al. Effects of blood glucose on vaspin secretion in patients with gestational diabetes mellitus. Gynecol Endocrinol. 2020;37(3):221–24. Doi: 10.1080/09513590.2020.1792438.


58. Shaker O., Sadik N. Vaspin gene in rat adipose tissue: relation to obesity-induced insulin resistance. Mol Cell Biochem. 2012;373(1–2):229–39. Doi: 10.1007/s11010-012-1494-5.


59. Dai R., Dong Z., Qian Y., Han Y. Obese type 2 diabetes mellitus patients have higher serum vaspin concentrations. J Diabetes. 2016;8(3):445–47. Doi: 10.1111/1753-0407.12365.


60. Li Q., Chen R., Moriya J., Yamakawa J., et al. A Novel Adipocytokine, Visceral Adipose Tissue-derived Serine Protease Inhibitor (Vaspin), and Obesity. J Int Med Res. 2008;36(4):625–29. Doi: 10.1177/147323000803600402


61. Saboori S., Hosseinzadeh-Attar M., Yousefi rad E.,et al. The comparison of serum vaspin and visfatin concentrations in obese and normal weight women. Diabetes Metab Syndr: Clinical Research & Reviews. 2015;9(4):320–23. Doi: 10.1016/j.dsx.2013.10.009.


62. Moradi S., Mirzaei K., Abdurahman A., Keshavarz S., Hossein-nezhad A. Mediatory effect of circulating vaspin on resting metabolic rate in obese individuals. Eur J Nutr. 2015;55(3):1297–305. Doi: 10.1007/s00394-015-0948-4.


63. Choi S., Kwak S., Lee Y., et al. Plasma vaspin concentrations are elevated in metabolic syndrome in men and are correlated with coronary atherosclerosis in women. Clin Endocrinol (Oxf). 2011;75(5):628–35. Doi: 10.1111/j.1365-2265.2011.04095.x.


64. Suleymanoglu S., Tascilar E., Pirgon O., Tapan S., Meral C., Abaci A. Vaspin and its correlation with insulin sensitivity indices in obese children. Diabetes Res Clin Pract. 2009;84(3):325–28. Doi: 10.1016/j.diabres.2009.03.008.


65. Cho J., Han T., Kang H. Combined effects of body mass index and cardio/respiratory fitness on serum vaspin concentrations in Korean young men. Eur J Appl Physiol. 2009;108(2):347–53. Doi: 10.1007/s00421-009-1238-8.


66. Esteghamati A., Noshad S., Mousavizadeh M., et al. Association of Vaspin with Metabolic Syndrome: The Pivotal Role of Insulin Resistance. Diabetes Metab J. 2014;38(2):143. Doi: 10.4093/dmj.2014.38.2.143.


67. Yin C., Hu W., Wang M., Xiao Y. The role of the adipocytokines vaspin and visfatin in vascular endothelial function and insulin resistance in obese children. BMC Endocr Disord. 2019;19(1). Doi: 10.1186/s12902-019-0452-6.


68. Handisurya A., Riedl M., Vila G., et al. Serum Vaspin Concentrations in Relation to Insulin Sensitivity Following RYGB-Induced Weight Loss. Obes Surg. 2009;20(2):198–203. Doi: 10.1007/s11695-009-9882-y.


69. Golpaie A., Tajik N., Masoudkabir F., et al. Short-term effect of weight loss through restrictive bariatric surgery on serum levels of vaspin in morbidly obese subjects. Eur Cytokine Netw. 2011;22(4):181–86. Doi: 10.1684/ecn.2011.0295.


70. Ibrahim D., Mohamed N., Fouad T., Soliman A. Short-Term Impact of Laparoscopic Sleeve Gastrectomy on Serum Cartonectin and Vaspin Levels in Obese Subjects. Obes Surg. 2018;28(10):3237–45. Doi: 10.1007/s11695-018-3306-9.


71. Grzelak T., Tyszkiewicz-Nwafor M., Dutkiewicz A.,et al. Vaspin (but not neuropeptide B or neuropeptide W) as a possible predictor of body weight normalization in anorexia nervosa. Arch Med Sci. 2021;17(2):376–81. Doi: 10.5114/aoms.2018.74969.


72. Grzelak T., Tyszkiewicz-Nwafor M., Dutkiewicz A.,et al. Neuropeptide B and Vaspin as New Biomarkers in Anorexia Nervosa. Biomed Res Int. 2018;2018:1–8. Doi: 10.1155/2018/9727509.


73. Paszynska E., Tyszkiewicz-Nwafor M., Slopien A., et al. Study of salivary and serum vaspin and total antioxidants in anorexia nervosa. Clin Oral Investig. 2018;22(8):2837–45. Doi: 10.1007/s00784-018-2370-9.


74. Oswiecimska J., Suwafa A., Swietochowska E., et al. Serum vaspin concentrations in girls with anorexia nervosa. J Pediatr Endocrinol Metab. 2016;29(6). Doi: 10.1515/jpem-2015-0390.


75. Ostrowska Z., Ziora K., Oswiecimska J., et al. Waspina a wybrane wykfadniki stanu koscca u dziewczat z jadfowstretem psychicznym. Endokrynol Pol. 2016;67(6):599–606. Doi: 10.5603/EP.2016.0070.


76. Oberbach A., Kirsch K., Lehmann S., et al. Serum Vaspin Concentrations Are Decreased after Exercise-Induced Oxidative Stress. Obes Facts. 2010;3(5):328–31. Doi: 10.1159/000321637.


77. Seeger J., Ziegelmeier M., Bachmann A., et al. Serum Levels of the Adipokine Vaspin in Relation to Metabolic and Renal Parameters. J Clin Endocrinol Metab. 2008;93(1):247–51. Doi: 10.1210/jc.2007-1853.


78. Loeffelholz C., Mohlig M., Arafat A., et al. Circulating vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans. Eur J Endocrinol. 2010;162(3):507–13. Doi: 10.1530/EJE-09-0737.


79. Sato K., Shirai R., Yamaguchi M., et al. Anti-Atherogenic Effects of Vaspin on Human Aortic Smooth Muscle Cell/Macrophage Responses and Hyperlipidemic Mouse Plaque Phenotype. Int J Mol Sci. 2018;19(6):1732. Doi: 10.3390/ijms19061732.


80. Heiker J., Kloting N., Kovacs P., et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci. 2013;70(14):2569–83. Doi: 10.1007/s00018-013-1258-8.


81. Tindall C., Dommel S., Riedl V., et al. Membrane Phospholipids and Polyphosphates as Cofactors and Binding Molecules of SERPINA12 (vaspin). Molecules. 2020;25(8):1992. Doi: 10.3390/molecules25081992.


82. Ulbricht D., Tindall C., Oertwig K., et al. Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin. Biol Chem. 2018;399(9):1079–84. Doi: 10.1515/hsz-2018-0108.


83. Ovaere P., Lippens S., Vandenabeele P.,Declercq W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci. 2009;34(9):453–63. Doi: 10.1016/j.tibs.2009.08.001.


84. Liu S., Li X., Wu Y., Duan R., et al. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways. PLoS One. 2017;12(12):e0189722. Doi: 10.1371/journal.pone.0189722.


85. Liu S., Duan R., Wu Y., et al. Effects of Vaspin on Insulin Resistance in Rats and Underlying Mechanisms. Sci Rep. 2018;8(1). Doi: 10.1038/s41598-018-31923-3.


86. Balcazar Morales N., Aguilar de Plata C. Role of AKT/mTORC1 pathway in pancreatic β-cell proliferation. Colomb Med (Cali). 2012;43(3):235–43. Doi: 10.25100/cm.v43i3.783.


87. Withers D., Burks D., Towery H., et al. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat Genet. 1999;23(1):32–40. Doi: 10.1038/12631.


88. Withers D., Gutierrez J., Towery H., et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391(6670):900–4. Doi: 10.1038/36116.


89. Kubota N., Tobe K., Terauchi Y., et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes. 2000;49(11):1880–89. Doi: 10.2337/diabetes.49.11.1880.


90. Burks D., White M. IRS proteins and beta-cell function. Diabetes. 2001;50(suppl_1):S140. Doi: 10.2337/diabetes.50.2007.s140.


91. Zieger K., Weiner J., Krause K., Schwarz M., et al. Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NF-κB pathway. Mol Cell Endocrinol. 2018;460:181–88. Doi: 10.1016/j.mce.2017.07.022.


92. Liu P., Li G., Wu J., et al. Vaspin promotes 3T3-L1 preadipocyte differentiation. Exp Biol Med (Maywood). 2015;240(11):1520–27. Doi: 10.1177/1535370214565081.


93. Ahmadian M., Suh J., Hah N., et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66. Doi: 10.1038/nm.3159.


94. Tontonoz P., Hu E., Spiegelman B. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell. 1994;79(7):1147–56. Doi: 10.1016/0092-8674(94)90006-x.


95. Peluso I., Morabito G., Urban L., et al. Oxidative Stress in Atherosclerosis Development: The Central Role of LDL and Oxidative Burst. Endocr Metab Immune Disord Drug Targets. 2012;12(4):351–60. Doi: 10.2174/187153012803832602.


96. Tanaka T. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997;16(24):7432–43. Doi: 10.1093/emboj/16.24.7432.


97. Garin-Shkolnik T., Rudich A., Hotamisligil G., Rubinstein M. FABP4 Attenuates PPARγ and Adipogenesis and Is Inversely Correlated With PPARγ in Adipose Tissues. Diabetes. 2014;63(3):900–11. Doi: 10.2337/db13-0436.


98. Jung C., Lee W., Hwang J., et al. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun. 2011;413(2):264–69. Doi: 10.1016/j.bbrc.2011.08.083.


99. Henning R. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509. Doi: 10.2217/fca-2018-0045.


100. Lin Y., Zhuang J., Li H., et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE−/− mice. Mol Med Rep. 2015;13(2):1509–16. Doi: 10.3892/mmr.2015.4708.


101. Phalitakul S., Okada M., Hara Y., Yamawaki H. Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacol Res. 2011;64(5):493–500. Doi: 10.1016/j.phrs.2011.06.001.


102. Jung C., Lee M., Kang Y., Lee Y., et al. Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Diabetol. 2014;13:41. Doi: 10.1186/1475-2840-13-41.


103. Ke X., Hao Y., Li B., et al. Vaspin Prevents Tumor Necrosis Factor-α–Induced Apoptosis in Cardiomyocytes by Promoting Autophagy. J Cardiovasc Pharmacol. 2018;77(5):257–67. Doi: 10.1097/fjc.0000000000000562.


104. Zhang D., Zhu H., Zhan E., et al. Vaspin Mediates the Intraorgan Crosstalk Between Heart and Adipose Tissue in Lipoatrophic Mice. Front Cell Dev Biol. 2021;9. Doi: 10.3389/fcell.2021.647131.


105. Kloing N., Kovacs P., Kern M., et al. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia. 2011;54(7):1819–23. Doi: 10.1007/s00125-011-2137-1.


106. Brunetti L., Di Nisio C., Recinella L., et al. Effects of vaspin, chemerin and omentin-1 on feeding behavior and hypothalamic peptide gene expression in the rat. Peptides. 2011;32(9):1866–71. Doi: 10.1016/j.peptides.2011.08.003.


107. Jeong E., Youn B., Kim D., Kim E., et al. Circadian Rhythm of Serum Vaspin in Healthy Male Volunteers: Relation to Meals. J Clin Endocrinol Metab. 2010;95(4):1869–75. Doi: 10.1210/jc.2009-1088.


108. Kang E., Magkos F., Sienkiewicz E., Mantzoros C. Circulating vaspin and visfatin are not affected by acute or chronic energy deficiency or leptin administration in humans. Eur J Endocrinol. 2011;164(6):911–17. Doi: 10.1530/EJE-11-0052.


109. Kurowska P., Mlyczynska E., Dawid M., et al. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A. Biol Reprod. 2020;102(6):1290–305. Doi: 10.1093/biolre/ioaa027.


110. Kurowska P., Mlyczynska E., Estienne A., et al. Expression and Impact of Vaspin on In Vitro Oocyte Maturation through MAP3/1 and PRKAA1 Signalling Pathways. Int J Mol Sci. 2020;21(24):9342. Doi: 10.3390/ijms21249342.


111. Kurowska P., Mlyczynska E., Dawid M., et al. Vitro Effects of Vaspin on Porcine Granulosa Cell Proliferation, Cell Cycle Progression, and Apoptosis by Activation of GRP78 Receptor and Several Kinase Signaling Pathways Including MAP3/1, AKT, and STAT3. Int J Mol Sci. 2019;20(22):5816. Doi: 10.3390/ijms20225816.


112. Kurowska P., Mlyczynska E., Dupont J., Rak A. Novel Insights on the Corpus Luteum Function: Role of Vaspin on Porcine Luteal Cell Angiogenesis, Proliferation and Apoptosis by Activation of GRP78 Receptor and MAP3/1 Kinase Pathways. Int J Mol Sci. 2020;21(18):6823. Doi: doi:10.3390/ijms21186823.


113. Kurowska P., Mlyczynska E., Dawid M., et al. The role of vaspin in porcine corpus luteum. J Endocrinol. 2020;247(3):283–94. Doi: 10.1530/JOE-20-0332.


114. Bongrani A., Mellouk N., Rame C., et al. Vaspin, a novel adipokine in woman granulosa cells physiology and PCOS pathogenesis?. J Endocrinol. 2021;249(1):57–70. Doi: 10.1530/JOE-20-0550.


115. Zhu X., Jiang Y., Shan P., et al. Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids. 2012;44(3):961–68. Doi: 10.1007/s00726-012-1425-5.


116. Wang H., Chen F., Li J., et al. Vaspin antagonizes high fat-induced bone loss in rats and promotes osteoblastic differentiation in primary rat osteoblasts through Smad-Runx2 signaling pathway. Nutr Metab (Lond). 2020;17(1). Doi: 10.1186/s12986-020-0429-5.


117. Wang J., Chen Z., Guan Z. Vaspin deficiency failed to promote the proliferation of BMSCs in osteoarthritis. Int J Rheum Dis. 2020;24(1):90–5. Doi: 10.1111/1756-185X.14010.


118. He H., Lu M., Shi H., Yue G., Luo H. Vaspin regulated cartilage cholesterol metabolism through miR155/LXRα and participated in the occurrence of osteoarthritis in rats. Life Sci. 2021;269:119096. Doi: 10.1016/j.lfs.2021.119096.


119. Nakatsuka A., Yamaguchi S., Eguchi J., et al. A Vaspin–HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease. Commun Biol. 2021;4(1):373. Doi: 10.1038/s42003-021-01902-y.


120. Hao F., Zhang H., Zhu J., et al. Association between vaspin level and coronary artery disease in patients with type 2 diabetes. Diabetes Res Clin Pract. 2016;113:26–32. Doi: 10.1016/j.diabres.2015.12.001.


121. El-Lebedy D., Ibrahim A., Ashmawy I. Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus. Diabetes Metab Syndr. 2018;12(5):643–48. Doi: 10.1016/j.dsx.2018.04.025.


122. Cura H., Ozdemir H., Demir C., et al. Investigation of Vaspin Level in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis. 2014;23(3):453–56. Doi: 10.1016/j.jstrokecerebrovasdis.2013.03.023


123. Yu D., Huang B., Wu B., Xiao J. Association of serum vaspin, apelin, and visfatin levels and stroke risk in a Chinese case-control study. Medicine (Baltimore). 2021;100(12):e25184. Doi: 10.1097/MD.0000000000025184.


124. Yang H., Huang Y., Gai C., et al. Serum vaspin levels are positively associated with diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes Investig. 2020;12(4):566–73. Doi: 10.1111/jdi.13385.


125. Kadoglou N., Gkontopoulos A., Kapelouzou A., et al. Serum levels of vaspin and visfatin in patients with coronary artery disease—Kozani study. Clin Chim Acta. 2011;412(1-2):48-52. Doi: 10.1016/j.cca.2010.09.012.


126. Ling Li H., Hui Peng W., Tao Cui S., et al. Vaspin plasma concentrations and mRNA expressions in patients with stable and unstable angina pectoris. Clin Chem Lab Med. 2011;49(9). Doi: 10.1515/CCLM.2011.236.


127. Zhang B., Peng W., Li H., et al. Plasma vaspin concentrations are decreased in acute coronary syndrome, but unchanged in patients without coronary lesions. Clin Biochem. 2013;46(15):1520–25. Doi: 10.1016/j.clinbiochem.2013.06.028.


128. Guan J., Wu L., Xiao Q., Pan L. Levels and clinical significance of serum homocysteine (Hcy), high-density lipoprotein cholesterol (HDL-C), vaspin, and visfatin in elderly patients with different types of coronary heart disease. Ann Palliat Med. 2021;10(5):5679–86. Doi: 10.21037/apm-21-1001.


129. Yang W., Li Y., Tian T., et al. Serum vaspin concentration in elderly patients with type 2 diabetes mellitus and macrovascular complications. BMC Endocr Disord. 2017;17(1):67. Doi: 10.1186/s12902-017-0216-0.


130. Sathyaseelan A. Assessment of Serum VASPIN Levels among Type 2 Diabetes Mellitus Patients with or without Acute Coronary Syndrome. J Clin Diagn Res. 2016; Doi: 10.7860/jcdr/2016/22417.8952


131. Aust G., Richter O., Rohm S., et al. Vaspin serum concentrations in patients with carotid stenosis. Atherosclerosis. 2009;204(1):262–66. Doi: 10.1016/j.atherosclerosis.2008.08.028.


132. Zhang P., Wang G., Gui Y., et al. Serum vaspin as a predictor of severity and prognosis in acute ischemic stroke patients. Nutr Neurosci. 2020;25(4):737–45. Doi: 10.1080/1028415X.2020.1806191.


133. Zhu B., Yan L., Ren H., et al. Predictive Value of Apelin and Vaspin on Hemorrhagic Transformation in Patients with Acute Ischemic Stroke after Intravenous Thrombolysis and Analysis of Related Factors. Evid Based Complement Alternat Med. 2021;2021:1–8. Doi: 10.1155/2021/5020622.


134. Zhang B., Peng W., Wang K., et al. Vaspin as a Prognostic Marker in Patients with Acute Myocardial Infarction. Heart Lung Circ. 2016;25(3):257–64. Doi: 10.1016/j.hlc.2015.07.001.


135. Zhou X., Chen Y., Tao Y., et al. Serum Vaspin as a Predictor of Adverse Cardiac Events in Acute Myocardial Infarction. J Am Heart Assoc. 2019;8(2). Doi: 10.1161/JAHA.118.010934.


136. Gulcelik N., Karakaya J., Gedik A., et al. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol. 2009;160(1):65–70. Doi: 10.1530/EJE-08-0723.


137. Kadoglou N., Kassimis G., Patsourakos N., et al. Omentin-1 and vaspin serum levels in patients with pre-clinical carotid atherosclerosis and the effect of statin therapy on them. Cytokine. 2021;138:155364. Doi: 10.1016/j.cyto.2020.155364.


138. Serinkan Cinemre F., Cinemre H., Bahtiyar N., et al. Apelin, Omentin-1, and Vaspin in patients with essential hypertension: association of adipokines with trace elements, inflammatory cytokines, and oxidative damage markers. Ir J Med Sci. 2020;190(1):97–106. Doi: 10.1007/s11845-020-02272-w.


139. Yang W., Li Y., Tian T., Wang L. Serum Vaspin Concentration in Elderly Type 2 Diabetes Mellitus Patients with Differing Body Mass Index: A Cross-Sectional Study. Biomed Res Int. 2017;2017:4875026. Doi: 10.1155/2017/4875026.


Об авторах / Для корреспонденции


Автор для связи: Владимир Владимирович Салухов, д.м.н., доцент, начальник 1-й кафедры (терапии усовершенствования врачей). Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург, Россия, vlasaluk@yandex.ru


ORCID:
Я.Р. Лопатин (Ya.R. Lopatin), https://orcid.org/0000-0002-7008-3054 ; eLibrary SPIN: 4864-2576
В.О. Толочко (V.O. Tolochko), https://orcid.org/0000-0001-5517-2692 
А.А. Минаков (A.A. Minakov), https://orcid.org/0000-0003-1525-3601 ; eLibrary SPIN: 5344-7883
В.В. Салухов (V.V. Salukhov), https://orcid.org/0000-0003-1851-0941 ; eLibrary SPIN: 4531-6011


Похожие статьи


Бионика Медиа