Надежда или погрешность: могут ли комбинации ингибиторов тирозинкиназы EGFR и других препаратов заменить монотерапию?


DOI: https://dx.doi.org/10.18565/pharmateca.2021.11.13-20

Ф.В. Моисеенко (1, 2)

1) Санкт-Петербургский клинический научно-практический центр специализированных видов медицинской помощи (онкологический), Санкт-Петербург, Россия; 2) Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова, Санкт-Петербург
Развитие таргетной терапии на протяжении последних 20 лет вне всякого сомнения изменило прогноз и течение части опухолей легкого. Значимое увеличение частоты объективных ответов, времени на фоне терапии, а также общей продолжительности жизни больных – крайне важный результат этого этапа. Тем не менее существование массы апробированных опций ставит много вопросов о выборе оптимального варианта лечения на основании клинических характеристик конкретного пациента. В рамках данного обзора авторы хотели напомнить читателю о существующих возможностях терапии, а также предположить возможные варианты для более индивидуального подхода к выбору терапии на основании имеющихся в литературе данных.

Литература


1. Mok T.S., Wu Y.L., Thongprasert S., et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57. Doi: 10.1056/NEJMoa0810699.


2. Imyanitov E.N., Iyevleva A.G., Levchenko E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol. 2021;157:103194. Doi: 10.1016/j.critrevonc.2020.103194.


3. Rosell R., Carcereny E., Gervais R., et al., Associazione Italiana Oncologia T. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. Doi: 10.1016/S1470-2045(11)70393-X.


4. Li X., Ren R., Ren S., et al. Peripheral blood for epidermal growth factor receptor mutation detection in non-small cell lung cancer patients. Transl Oncol. 2014;7(3):341–48. Doi: 10.1016/j.tranon.2014.04.006


5. Douillard J.Y., Ostoros G., Cobo M., et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9(9):1345–53. Doi: 10.1097/JTO.0000000000000263.


6. Tseng J.S., Yang T.Y., Tsai C.R., et al. Dynamic plasma EGFR mutation status as a predictor of EGFR-TKI efficacy in patients with EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2015;10(4):603–10. Doi: 10.1097/JTO.0000000000000443.


7. Karachaliou N., Mayo-de las Casas C., Queralt C., et al., Spanish Lung Cancer G. Association of EGFR L858R Mutation in Circulating Free DNA With Survival in the EURTAC Trial. JAMA Oncol. 2015;1(2):149–57. Doi: 10.1001/jamaoncol.2014.257.


8. Yanagita M., Redig A.J., Paweletz C.P., et al. A Prospective Evaluation of Circulating Tumor Cells and Cell-Free DNA in EGFR-Mutant Non-Small Cell Lung Cancer Patients Treated with Erlotinib on a Phase II Trial. Clin Cancer Res. 2016;22(24):6010–20. Doi: 10.1158/1078-0432.CCR-16-0909.


9. Yang X., Zhuo M., Ye X., et al. Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer. Oncotarget. 2016;7(15):20810–24. Doi: 10.18632/oncotarget.8021.


10. Lee Y., Park S., Kim W.S., et al. Correlation between progression-free survival, tumor burden, and circulating tumor DNA in the initial diagnosis of advanced-stage EGFR-mutated non-small cell lung cancer. Thorac Cancer. 2018;9(9):1104–10. Doi: 10.1111/1759-7714.12793.


11. Wu Y.L., Zhou C., Lu S., et al. Erlotinib versus gemcitabine/cisplatin in Chinese patients with EGFR mutation-positive advanced non-small-cell lung cancer: Crossover extension and post-hoc analysis of the ENSURE study. Lung Cancer. 2019;130:18–24. Doi: 10.1016/j.lungcan.2019.01.016.


12. Wu Y.L., Zhou C., Hu C.P., et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22. Doi: 10.1016/S1470-2045(13)70604-1.


13. Kato T., Yoshioka H., Okamoto I., et al. Afatinib versus cisplatin plus pemetrexed in Japanese patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Subgroup analysis of LUX-Lung 3. Cancer Sci. 2015;106(9):1202–11. Doi: 10.1111/cas.12723.


14. Park K., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17(5):577–89. Doi: 10.1016/S1470-2045(16)30033-X.


15. Paz-Ares L., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol. 2017;28(2):270–77. Doi: 10.1093/annonc/mdw611.


16. Yang J.C., Wu Y.L., Schuler M., et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–51. Doi: 10.1016/S1470-2045(14)71173-8.


17. Mok T.S., Cheng Y., Zhou X., et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib With Gefitinib in Patients With Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. J Clin Oncol. 2018;36(22):2244–50. Doi: 10.1200/JCO.2018.78.7994.


18. Ramalingam S.S., Vansteenkiste J., Planchard D., et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med. 2020;382(1):41–50. Doi: 10.1056/NEJMoa1913662.


19. Mok T.S., Wu Y.L., Ahn M.J., et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer . N Engl J Med. 2017;376(7):629–40. Doi: 10.1056/NEJMoa1612674.


20. Hochmair M.J., Morabito A., Hao D., et al. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: updated analysis of the observational GioTag study. Future Oncol. 2019;15(25):2905–14. Doi: 10.2217/fon-2019-0346.


21. Li R., Zhou X., Yao H., Li L. Four generations of EGFR TKIs associated with different pathogenic mutations in non-small cell lung carcinoma. J Drug Target. 2020;28(9):861–72. Doi: 10.1080/1061186X.2020.1737934.


22. He J., Zhou Z., Sun X., et al. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur J Med Chem. 2021;210:112995. Doi: 10.1016/j.ejmech.2020.112995.


23. Jia Y., Yun C. H., Park E., et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016;534(7605):129–32. Doi: 10.1038/nature17960.


24. To C., Jang J., Chen T., et al. Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discov. 2019;9(7):926–43. Doi: 10.1158/2159-8290.CD-18-0903.


25. Li L., Jiang L., Wang Y., et al. Combination of Metformin and Gefitinib as First-Line Therapy for Nondiabetic Advanced NSCLC Patients with EGFR Mutations: A Randomized, Double-Blind Phase II Trial. Clin Cancer Res. 2019;25(23):6967–75. Doi: 10.1158/1078-0432.CCR-19-0437.


26. Sui X., Zhang M., Han X., et al. Combination of traditional Chinese medicine and epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of non-small cell lung cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2020;99(32):e20683. Doi: 10.1097/MD.0000000000020683.


27. Yang J.C., Cheng Y., Murakami H., et al. A Randomized Phase 2 Study of Gefitinib With or Without Pemetrexed as First-line Treatment in Nonsquamous NSCLC With EGFR Mutation: Final Overall Survival and Biomarker Analysis. J Thorac Oncol. 2020;15(1):91–100. Doi: 10.1016/j.jtho.2019.09.008.


28. Han B., Jin B., Chu T., et al. Combination of chemotherapy and gefitinib as first-line treatment for patients with advanced lung adenocarcinoma and sensitive EGFR mutations: A randomized controlled trial. Int J Cancer. 2017;141(6):1249–56. Doi: 10.1002/ijc.30806.


29. Hosomi Y., Morita S., Sugawara S., et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer With Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J Clin Oncol. 2020;38:2:115–23. Doi: 10.1200/JCO.19.01488.


30. Xu L., Nilsson M.B., Saintigny P., et al. Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung cancer cells. Oncogene. 2010;29:18:2616–27. Doi: 10.1038/onc.2010.16.


31. Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;(3):203–20. Doi: 10.1158/1541-7786.MCR-06-0404.


32. Larsen A.K., Ouaret D., El Ouadrani K., Petitprez A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther. 2011;131(1):80–90. Doi: 10.1016/j.pharmthera.2011.03.012.


33. Le X., Nilsson M., Goldman J., et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. J Thorac Oncol. 2021;16(2):205–15. Doi: 10.1016/j.jtho.2020.10.006.


34. Masuda C., Yanagisawa M., Yorozu K., et al. Bevacizumab counteracts VEGF-dependent resistance to erlotinib in an EGFR-mutated NSCLC xenograft model. Int J Oncol. 2017;51(2):425–34. Doi: 10.3892/ijo.2017.4036.


35. Saito H., Fukuhara T., Furuya N., et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):625–35. Doi: 10.1016/S1470-2045(19)30035-X.


36. Nakagawa K., Garon E. B., Seto T., et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(12):1655–69. Doi: 10.1016/S1470-2045(19)30634-5.


37. Blakely C.M., Watkins T.B.K., Wu W., et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 2017;49(12):1693–704. Doi: 10.1038/ng.3990.


38. Yu H.A., Suzawa K., Jordan E., et al. Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clin Cancer Res. 2018;24(13):3108–18. Doi: 10.1158/1078-0432.CCR-17-2961.


39. Jakobsen J.N., Santoni-Rugiu E., Grauslund M., et al. Concomitant driver mutations in advanced EGFR-mutated non-small-cell lung cancer and their impact on erlotinib treatment. Oncotarget. 2018;9(40):26195–208. Doi: 10.18632/oncotarget.25490.


40. Hong S., Gao F., Fu S., et al. Concomitant Genetic Alterations With Response to Treatment and Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With EGFR-Mutant Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(5):739–42. Doi: 10.1001/jamaoncol.2018.0049.


41. Rachiglio A.M., Fenizia F., Piccirillo M.C., et al. The Presence of Concomitant Mutations Affects the Activity of EGFR Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC) Patients. Cancers (Basel). 2019;11(3):341. Doi: 10.3390/cancers11030341


42. Bria E., Pilotto S., Amato E., et al. Molecular heterogeneity assessment by next-generation sequencing and response to gefitinib of EGFR mutant advanced lung adenocarcinoma. Oncotarget. 2015;6(14):12783–95. Doi: 10.18632/oncotarget.3727.


43. Lim S.M., Kim H.R., Cho E.K., et al. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium). Oncotarget. 2016;7(24):36311–320. Doi: 10.18632/oncotarget.8904.


44. Lee T., Lee B., Choi Y.L., et al. Non-small Cell Lung Cancer with Concomitant EGFR, KRAS, and ALK Mutation: Clinicopathologic Features of 12 Cases. J Pathol Transl Med. 2016;50(3):197–203. Doi: 10.4132/jptm.2016.03.09.


45. Oxnard G.R., Hu Y., Mileham K.F., et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol. 2018;4(11):1527–34. Doi: 10.1001/jamaoncol.2018.2969.


46. Liu Y., Sun L., Xiong Z.C., et al. Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs. Onco Targets Ther. 2017;10:2267–79. Doi: 10.2147/OTT.S133082.


47. Testa U., Castelli G., Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel). 2018;10(8):248. Doi: 10.3390/cancers10080248.


48. Jamal-Hanjani M., Wilson G.A., McGranahan N., et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(22):2109–21. Doi: 10.1056/NEJMoa1616288.


49. Robinson D.R., Wu Y. M., Lonigro R.J., et al. Integrative clinical genomics of metastatic cancer.Nature. 2017;548(7667):297–303. Doi: 10.1038/nature23306.


50. Kim E.S., Roy U.B., Ersek J.L., et al. Updates Regarding Biomarker Testing for Non-Small Cell Lung Cancer: Considerations from the National Lung Cancer Roundtable. J Thorac Oncol. 2019;14(3):338–42. Doi: 10.1016/j.jtho.2019.01.002.


51. Canale M., Petracci E., Delmonte A., et al. Concomitant TP53 Mutation Confers Worse Prognosis in EGFR-Mutated Non-Small Cell Lung Cancer Patients Treated with TKIs. J Clin Med. 2020;9(4):1047. Doi: 10.3390/jcm9041047


52. Li X.M., Li W.F., Lin J.T., et al. Predictive and Prognostic Potential of TP53 in Patients With Advanced Non-Small-Cell Lung Cancer Treated With EGFR-TKI: Analysis of a Phase III Randomized Clinical Trial (CTONG 0901). Clin Lung Cancer. 2021;22(2):100–109.e3. Doi: 10.1016/j.cllc.2020.11.001.


53. Imielinski M., Berger A., Hammerman P.S., et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20. Doi: 10.1016/j.cell.2012.08.029.


54. Offin M., Chan J. M., Tenet M., et al. Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. J Thorac Oncol. 2019;14(10):1784–93. Doi: 10.1016/j.jtho.2019.06.002.


55. Santoni-Rugiu E., Melchior L.C., Urbanska E.M., et al. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel). 2019;11(7):923. Doi: 10.3390/cancers11070923.


Об авторах / Для корреспонденции


Автор для связи: Федор Владимирович Моисеенко, д.м.н., науч. сотр. отдела инновационных методов терапевтической онкологии и реабилитации, НМИЦ онкологии им. Н.Н. Петрова; зав. онкологическим химиотерапевтическим (противоопухолевой лекарственной терапии) отделением биотерапии, Санкт-Петербургский клинический научно-практический центр специализированных видов медицинской помощи (онкологический, Санкт-Петербург, Россия; moiseenkofv@gmail.com


Похожие статьи


Бионика Медиа