Таурин (2-аминоэтансульфоновая кислота) является конечным продуктом обмена аминокислот, содержащих серу (метионина, цистеина, гомоцистеина, цистина). Ключевую роль в синтезе таурина у животных играет фермент цистеинсульфинат декарбоксилаза, активность которой у человека ограничена. Поэтому источником таурина для человека в основном является животная пища, т. к. в растениях таурин не встречается [1]. Аналогично человеку некоторые виды животных- также могут получать таурин только с едой. Рекордсменами по содержанию таурина являются морепродукты.
Открытый в начале XIX в., таурин привлек к себе внимание исследователей лишь в середине XX столетия. В большинстве случаев таурин описывается как основной осморегулятор клетки, мембранный протектор, регулятор внутриклеточного кальция, обладающий свойствами антиоксиданта, деток- сикатора, который участвует в обмене жиров и жирорастворимых витаминов, влияет на воспалительные процессы. Кроме того, следует отметить еще одну потенциально важную реакцию: взаимодействие таурина и уридина с образованием 5-тауринометилуридина, в результате чего происходит модификация тРНК митохондрий [2, 3], что влияет на митохондриальный синтез белка [4, 5].
Имеются сообщения о терапевтических эффектах таурина при лечении эпилепсии [7], тканевой ишемии [8, 44], ожирения [9], сахарного диабета 2 типа [10], артериальной гипертензии [11], застойной сердечной недостаточности [12]. Таурин оказывал благоприятное действие на сосуды курильщиков [9], больных, получавших метотрексат [14], при алкоголизме [13], инфаркте миокарда [15]. Содержание таурина исследовали при нейродегенеративных процессах в пожилом возрасте [16, 17], при лучевой болезни [18].
Благоприятное действие таурина при столь различных заболеваниях обнаруживается лишь в том случае, если в организме существует его дефицит. Если же в организме нет дефицита этого субстрата, его употребление не оказывает никакого воздействия — ни положительного, ни отрицательного. Поскольку физиологические функции таурина разнообразны, разнообразны и эффекты от его применения.
Максимальная доза препарата, которая была испытана в клинике и не вызывала никаких токсических проявлений, составила 15 г/сут. При остром и хроническом введении таурина в очень высоких дозах (1 г/кг) не отмечено гибели экспериментальных животных.
Последствия дефицита таурина для животных
Концентрация вещества в плазме животных менее 30 мкмоль/л расценивается как его дефицит [30]. Дефицит таурина вызывает дилатационную кардиопатию у кошек. Кроме того, при дефиците таурина у кошек изменяются параметры антикоагулянтной и фибринолитической активности крови, развивается ретинальная дегенерация, кардиопатия, изменяется функция белых клеток крови, наблюдается нарушение роста и развития. Устранение дефицита таурина значительно улучшает эти показатели, а также прогноз выживания животных и миокардиальную функцию [28, 29].
Дефицит таурина может стать причиной дилатационной кардиомиопатии и у собак. У собак некоторых пород наблюдалось существенное улучшение функции миокарда после добавления таурина в рацион [31]. Нормальная концентрация таурина в плазме крови собак составляет 50—180 нмоль/мл. Добавление таурина и карнитина собакам значительно улучшает прогноз при дилатационной кардиомиопатии [32].
Одной из моделей для изучения роли таурина являются животные, у которых выключен ген, ответственный за синтез транспортной тауриновой системы (TauTKO). Известно, что таурин проникает в клетки животных против концентрационного градиента по высокоспецифичной транспортной системе. У мышей, лишенных такой транспортной системы, наблюдается увеличение экспрессии мРНК натрий- уретического гормона в мозге и тяжелых цепей β-миозина. Способность таких мышей выполнять физическую нагрузку (в данном исследовании - плавать) падает в 10 раз. У животных развивается кардиопатия [33], наблюдается дисфункция органов зрения, слуха, почек, печени [34-36].
Все это свидетельствует о важной роли таурина в работе многих органов и систем животных.
Таурин в женском молоке и искусственное вскармливание детей
Достаточно интересно исследование, в котором недоношенным младенцам, рожденным в 1982-1985 гг., назначали стандартную схему кормления, разработанную для детей, рожденных в срок. Впоследствии при проведении тестов на ментальное развитие (Bayley mental development index) в возрасте 18 месяцев и математические способности (WISC-R arithmetic subtest) в 7-летнем возрасте было выявлено, что эти дети имели более низкие показатели развития, чем те, которые получали искусственное вскармливание, соответствующее стандартам питания для недоношенных детей, т. е. обогащенное различными нутриентами [25]. Была выдвинута гипотеза, согласно которой таурин необходим для нормального ментального развития. Сравнительный анализ ингредиентов, содержащихся в детском питании, показал, что таурин является тем питательным веществом, наличие которого может объяснить это явление. Кроме того, обсуждается роль таурина в нормальном развитии мозга и его роли как антиоксиданта [26].
Таурин для лиц пожилого возраста и после травмы
Изменение уровня таурина у пожилых людей также неблагоприятно сказывается на обмене веществ. Jeevanandam и соавт. показали, что концентрация таурина в плазме крови лиц пожилого возраста составляет 46 ± 3 мкмоль/л, а молодых — 81 ± 7 мкмоль/л. После травмы уровень таурина у пожилых пациентов падает еще больше - до 30 ± 5 мкмоль/л, а у молодых - до 33 ± 5 мкмоль/л [27]. Таким образом, можно говорить о целесообразности дополнительного потребления таурина в пожилом возрасте, а также в молодом возрасте - после получения травмы или хирургического вмешательства.
Таурин и сердечно-сосудистые риски
В 1982—2005 гг. Y. Yamori (Институт мирового развития здравоохранения, Университет Мукогавы, Япония) провел многоцентровое масштабное эпидемиологическое исследование CARDIAC (Cardiovascular Diseases and Alimentary Comparison — сравнение сердечно-сосудистой заболеваемости и особенностей питания), выполненное при участии ВОЗ, в котором участвовали мужчины и женщины из 61 популяции. Исследование выявило обратную корреляцию между потреблением таурина и смертностью населения от ишемических заболеваний сердца. Анализ данных с помощью метода ступенчатой линейной регрессии показал, что смертность от ИБС на 59 % обусловлена дефицитом таурина и отношением n-3 полиненасыщенных к насыщенным жирным кислотам в пище.
Средние показатели потребления таурина (об этом судят по его выделению с мочой) в нашей стране очень низкие. Так, у женщин, живущих в Москве, среднее количество выделяемого с мочой таурина составляет 127 мкмоль/ сут, а у жителей Беппу (Япония) — 1590 мкмоль/сут. В соответствии с результатами этих исследований можно предположить, что смертность в России выше, чем в Японии, что соответствует действительности [19].
Было проведено сравнение популяций, потребляющих большие количества таурина с едой (> 639,4 ммоль/ сут), и популяций с потреблением таурина < 639,4 ммоль/сут. Оказалось, что регионы с большим потреблением таурина имеют меньшие сердечнососудистые риски (значительно меньшие показатели уровня общего холестерина, артериального давления, индекса массы тела и индекса атерогенности) [20].
Таурин и сахарный диабет
Многочисленные исследования показывают, что содержание таурина в тканях у больных СД значительно снижено [45]. Это может быть связано с накоплением сорбитола в тканях при активации полиолового пути окисления глюкозы в условиях гипергликемии. С одной стороны, это приводит к снижению синтеза таурина в клетках, а с другой стороны — к снижению активности глутатионредуктазы и, следовательно, к уменьшению восстановления окисленного глутатиона, что приводит к окислительному стрессу клетки [46]. Показано, что таурин снижает содержание сорбитола в условиях гипергликемии, таким образом проявляя свойства антиоксиданта.
Как известно, основная причина смерти больных сахарным диабетом — коронарная болезнь сердца. Ключевую роль в ее развитии играют эндотелиальная дисфункция, дислипидемия и повышенная агрегация тромбоцитов.
Обнаружено, что таурин способен связывать липидные гидроперекиси, нарушающие целостность эндотелиального эпителия, и таким образом предотвращать апоптоз клеток, а также развитие эндотелиальной дисфункции [53].
Таурин в составе таурохолевых желчных кислот принимает активное участие в выведении холестерина. Показано, что прием таурина снижает уровень холестерина у крыс, получающих атерогенную диету [47, 48].
Снижение содержания таурина в тромбоцитах больных СД приводит к повышению внутриклеточного Ca2+ в них, т. к. данное вещество является важнейшим регулятором внутриклеточного кальция [50—52]. Это сопровождается повышением агрегационной способности тромбоцитов и возрастанием риска тромбообразования. Применение таурина больными СД сопровождается снижением гиперреактивнос-ти тромбоцитов [49, 53].
Хорошо известно значение активации полиолового пути окисления глюкозы в генезе диабетической ретинопатии, катаракты, нейро- и нефропатии. Внутриклеточное накопление сорбитола ведет к т. н. осмотическому и окислительному стрессу. Таким образом, вполне логичным представляется применение таурина как осморегулятора и антиоксиданта в целях профилактики прогрессирования диабетических осложнений.
Течение СД 2 типа характеризуется прогрессирующей инсулиновой недостаточностью, в конечном итоге приводящей к необходимости перевода пациентов на заместительную инсулинотерапию. Развитие инсулиновой недостаточности при СД 2 типа связывают с эффектом глюкозотоксичности за счет индукции окислительного стресса и апоптоза β-клеток поджелудочной железы [54]. Протективная роль таурина показана в эксперименте на изолированных островках Лангерганса в условиях окислительного стресса, индуцированного высокими концентрациями глюкозы [55] или жирных кислот [56].
Таурин является необходимой аминокислотой для формирования нормальной инсулинсекретирующей функции островков при внутриутробном развитии. При исследовании секреции инсулина у новорожденных крысят было показано, что секреторные возможности β-клеток крысят, матери которых получали низкопротеиновую диету во время беременности, были значительно снижены по сравнению с контролем. В то же время у крысят, матери которых во время гестации получали таурин вместе с низкопротеиновой диетой, секреция инсулина не отличалась от контроля [57].
Эти данные позволяют предполагать связь между снижением уровня таурина во время беременности и возможностью развития СД 2 типа у потомства в будущем [58].
Одним из основных патогенетических факторов развития СД 2 типа является инсулинорезистентность, которая прогрессирует по мере развития нарушений углеводного обмена, связанных с окислительным стрессом. При самоокислении глюкозы в условиях гипергликемии происходит избыточное образование диацилглицерола — основного стимулятора активности протеинкиназы С (ПКС). Активация ПКС ведет к нарушению проведения сигнала через инсулиновые рецепторы клеток. Таурин подавляет активность ПКС за счет снижения продукции диацилглицерола. Изучая чувствительность к инсулину у крыс с ожирением и спонтанным СД 2 типа, Y. Nakaya и соавт. обнаружили повышение чувствительности к инсулину, связанное с улучшением липидного обмена, снижением окисляемости липопротеидов и уровня пероксинитрита (косвенные маркеры окислительного стресса), что позволяет предполагать непрямое антиоксидантное действие таурина [59].
Гестационный сахарный диабет
В одном из исследований обследовались 72 женщины, из них 43 — с гестационным сахарным диабетом (ГСД) в анамнезе, 7 — с нарушенной толерантностью к глюкозе (НТГ) и 22 — с нормальной толерантностью к глюкозе. Глюкозотолерантный тест проведен на 24-28-й неделе беременности [24]. Было выявлено, что таурин в плазме значительно ниже у женщин, имевших в анамнезе ГСД, но не у женщин с НТГ. Кроме того, уровень таурина в плазме был обратно пропорционален площади под кривой глюкозы до беременности и отношению С-пептид/ глюкоза во время и после беременности (p < 0,05). Относительный риск (ОР) нарушений обмена глюкозы в течение предыдущих беременностей (ГСД + НТГ) возрастал с понижением уровня таурина и учетом поправки на возраст, индекс массы тела, наличие диабета в анамнезе (ОР = 0,980; p = 0,003). Таким образом, содержание таурина в плазме может служить маркером изменений обмена глюкозы у женщин с ГСД.
Итак, дефицит таурина наблюдается при различных заболеваниях. В настоящее время можно говорить о важной роли таурина в качестве модулятора многих патофизиологических процессов в организме человека. Есть основания считать, что достаточное потребление таурина и устранение его дефицита в организме позволят более эффективно бороться со многими хроническими неинфекционными заболеваниями.