Возраст-зависимые аспекты информативности суррогатных индексов инсулинорезистентности при формировании менопаузального метаболического синдрома


DOI: https://dx.doi.org/10.18565/pharmateca.2023.3.90-98

Руяткина Л.А., Руяткин Д.С., Щербакова Л.В.

1) Новосибирский государственный медицинский университет, Новосибирск, Россия; 2) Научно-исследовательский институт терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр, Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Актуальность. Необходимость оценки инсулинорезистентности (ИР), патогенетически объединяющей компоненты метаболического синдрома (МС), приобретает особое значение при его формировании в период менопаузального перехода вследствие изменения функционального состояния оси гипофиз–яичники. В качестве суррогатных показателей, наряду с традиционными индексами семейства HOMA, в последние годы привлекает внимание индекс TyG, показавший тесную согласованность с клэмп-тестом, «золотым» стандартом оценки тяжести ИР. Однако сравнительные исследования информативности суррогатных инсулиновых и неинсулиновых индексов в перименопаузальный период практически отсутствуют.
Цель исследования: оценить влияние возраста на взаимосвязи суррогатных индексов ИР, TyG и семейства HOMA2 с параметрами менопаузального МС в процессе его формирования в когорте женщин 35–59 лет без дисгликемии в зависимости от наличия артериальной гипертензии (АГ).
Методы. У 88 нормогликемических женщин 35–59 лет с различным функциональным состоянием оси гипофиз–яичники и разделенных на 2 группы в зависимости от наличия АГ определены индекс массы тела (ИМТ), окружность талии (ОТ), уровни артериального давления, триглицеридов, ХС-ЛПВП, ИРИ, ФСГ и эстрадиола, гликемии натощак, индексы TyG и семейства HOMA2. С помощью SPSS (версия 17) оценивали ME (25–75%); межгрупповые различия по критерию Mann–Whitnеy; проводили корреляционные анализы по Спирмену и частичный для нивелирования влияния возраста.
Результаты. Наибольший спектр значимых ассоциаций, не зависимых от возраста и в тандеме с ним в отличие от индексов семейства HOMA2 выявлен у TyG в группе пациенток с АГ: с ОТ и ИМТ, ИРИ и ХС-ЛПВП, ФСГ и Е2. На индекс TyG также оказывают влияние возраст-ассоциированные факторы: длительность АГ и постменопаузы. В общей когорте женщин (n=88) большинство указанных корреляционных связей сохраняется и усиливается, однако ассоциации с ФСГ и Е2 сохраняются только в рамках анализа по Спирмену. Обращают внимание стабильные ассоциации TyG с ИРИ в отсутствие таковых с HOMA2-B у пациенток с АГ без дисгликемии.
Заключение. В процессе формирования менопаузального МС у пациенток с АГ индекс TyG в отличие от HOMA2-IR и HOMA2-S образует большее число стабильных корреляционных связей, ассоциированных с возрастом и не зависимых от него, с маркерами МС и показателями функциональной активности оси гипофиз–яичники в период менопаузального перехода. Корреляции TyG с уровнями ИРИ, стабильные при нивелировании влияния возраста у пациенток с АГ без дисгликемии, свидетельствуют об угрозе нарушений углеводного обмена через феномен липоглюкотоксичности при дальнейшем усилении ИР на фоне эстрогенного дефицита.

Литература


1. Tune J.D., Goodwill A.G., Sassoon D.J., Mather K.J. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70. Doi: 10.1016/j.trsl.2017.01.001.


2. Lindberg S., Jensen J.S., Bjerre M., et al. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow-up predict risk of the metabolic syndrome. Diabetes Metab. 2017;43(2):134–39. Doi: 10.1016/j.diabet.2016.07.027.


3. Lopez-Jaramillo P., Gomez-Arbelaez D., Martinez-Bello D., et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. Lancet Healthy Longev. 2023;4(1):e23–e33. Doi: 10.1016/S2666-7568(22)00247-1.


4. Reaven G.M. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin N Am. 2004;33:283–303. Doi: 10.1016/j.ecl.2004.03.002.


5. Alberti K.G., Eckel R.H., Grundy S.M., et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–45. Doi: 10.1161/CIRCULATIONAHA.109.192644.


6. Jeong H.G., Park H. Metabolic Disorders in Menopause. Metabolites. 2022;12(10):954. Doi: org/10.3390/metabo12100954.


7. Fisher G., Tay J., Warren J.L., et al. Sex and race contribute to variation in mitochondrial function and insulin sensitivity. Physiol Rep. 2021;9(19):e15049. Doi: 10.14814/phy2.15049.


8. Oya J., Nakagami T., Yamamoto Y., Fukushima S.et al. Effects of age on insulin resistance and secretion in subjects without diabetes. Intern Med. 2014;53(9):941–47. Doi: 10.2169/internalmedicine.53.1580.


9. Ahmed F., Kamble P.G., Hetty S., et al. Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women. J Clin Endocrinol Metab. 2022;107(5):e1879-e1889. Doi: 10.1210/clinem/dgac042.


10. Stevenson J.C., Tsiligiannis S., Panay N. Cardiovascular Risk in Perimenopausal Women. Curr Vasc Pharmacol. 2019;17(6):591–594. Doi: 10.2174/1570161116666181002145340.


11. Kodoth V, Scaccia S, Aggarwal B. Adverse Changes in Body Composition During the Menopausal Transition and Relation to Cardiovascular Risk: A Contemporary Review. Womens Health Rep (New Rochelle). 2022;3(1):573–81. Doi: 10.1089/whr.2021.0119.


12. Park S.K., Harlow S.D., Zheng H., et al. Association between changes in oestradiol and follicle-stimulating hormone levels during the menopausal transition and risk of diabetes. Diabet Med. 2017;34(4):531–38. Doi: org/10.1111/dme.13301.


13. Son M.K., Lim N.K., Lim J.Y., et al. Difference in blood pressure between early and late menopausal transition was significant in healthy Korean women. BMC Womens Health. 2015;15:64. Doi: 10.1186/s12905-015-0219-9.


14. Malmstrom H., Walldius G., Carlsson S., et al. Elevations of metabolic risk factors 20 years or more before diagnosis of type 2 diabetes: Experience from the AMORIS study. Diabetes Obes Metab. 2018;20(6):1419–26. Doi: 10.1111/dom.13241.


15. Garvey W.T., Garber A.J., Mechanick J.I., et al. The Aace Obesity Scientific Committee. American association of clinical endocrinologists and american college of endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract. 2014;20(9):977-89. Doi: 10.4158/EP14280.PS.


16. Slopien R., Wender-Ozegowska E., Rogowicz-Frontczak A., et al. Menopause and diabetes: EMAS clinical guide. Maturitas. 2018;117:6–10. Doi: 10.1016/j.maturitas.2018.08.009.


17. Руяткина Л.А., Руяткин Д.С., Исхакова И.С. Возможности и варианты суррогатной оценки инсулинорезистентности. Ожирение и метаболизм. 2019;16(1):27–33.


18. Guerrero-Romero F., Simental-Mendia L.E.,Gonzalez-Ortiz M., et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51. Doi: 10.1210/jc.2010-0288.


19. Massimino M., Monea G., Marinaro G., et al. The Triglycerides and Glucose (TyG) Index Is Associated with 1-Hour Glucose Levels during an OGTT. Int J Environ Res Public Health. 2022;20(1):787. Doi: 10.3390/ijerph20010787.


20. Клинические рекомендации. Менопауза и климактерическое состояние у женщин. 2021.


21. Wallace T.M., Levy J.C., Matthews D.R. Use and Abuse of HOMA Modeling. Diabetes Care. 2004;27(6):1487–95. Doi: 10.2337/diacare.27.6.1487.


22. Karvonen-Gutierrez C., Kim C. Association of Mid-Life Changes in Body Size, Body Composition and Obesity Status with the Menopausal Transition. Healthcare (Basel). 2016;4(3):42. Doi: 10.3390/healthcare4030042.


23. Randolph J.F. Jr., Zheng H., Sowers M.R., et al. Change in Follicle-Stimulating Hormone and Estradiol Across the Menopausal Transition: Effect of Age at the Final Menstrual Period. J Clin Endocrin & Metab. 2011;96(3):746–74. Doi: 10.1210/jc.2010-1746.


24. Yu Z., Yang J., Huang, W.J., et al. Follicle stimulating hormone promotes production of renin through its receptor in juxtaglomerular cells of kidney. Diabetol Metab Syndr. 2022;14(1):65. Doi: 10.1186/s13098-022-00816-x.


25. Barton M., Meyer M.R. Postmenopausal Hypertension: Mechanisms and Therapy. Hypertension. 2009;54(1):11–8. Doi: 10.1161/HYPERTENSIONAHA.108.120022.


26. Руяткина Л.А., Руяткин Д.С. Ожирение: «перекрестки» мнений, знаний и возможностей. Медицинский Совет. 2020;(7):108-120.


27. Lopez-Lopez J.P., Cohen D.D., Ney-Salazar D., et al. The prediction of Metabolic Syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc Diabetol. 2021;20(1):68. Doi: 10.1186/s12933-021-01256-z.


28. Karakelides H., Irving B.A., Short K.R., O’Brien P., Nair KS. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes. 2010;59(1):89–97. Doi: 10.2337/db09-0591.


29. Exebio J.C., Ajabshir S., Zarini G.G., et al. Use of Homeostatic Model Assessment Indexes for the Identification of Metabolic Syndrome and Insulin Resistance among Cuban-Americans: A Cross Sectional Study. Br J Med Med Res. 2014;4(29):4824–33. Doi: 10.9734/BJMMR/2014/8988.


30. Wu Z., Cui H., Li W., et al. Comparison of three non-insulin-based insulin resistance indexes in predicting the presence and severity of coronary artery disease. Front Cardiovasc Med. 2022;29(9):918359. Doi: 10.3389/fcvm.2022.918359.


31. Cerf M.E. Developmental Programming and Glucolipotoxicity: Insights on Beta Cell Inflammation and Diabetes. Metabolites. 2020;10(11):444. Doi: 10.3390/metabo10110444.


32. Lee Y., Hirose H., Ohneda M., Johnson J.H. et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994;91(23):10878–82. Doi: 10.1073/pnas.91.23.10878.


33. Somesh B.P., Verma M.K., Sadasivuni M.K., et al. Chronic Glucolipotoxic Conditions in Pancreatic Islets Impair Insulin Secretion Due to Dysregulated Calcium Dynamics, Glucose Responsiveness and Mitochondrial Activity. BMC Cell Biol. 2013;14:31. Doi: 10.1186/1471-2121-14-31.


34. Руяткина Л.А., Руяткин Д.С., Исхакова И.С. Анализ формирования дисгликемии в обосновании ранней патогенетической терапии сахарного диабета. Медицинский совет. 2021;(7):33–44.


35. Li X., Li G., Cheng T., et al. Association between triglyceride-glucose index and risk of incident diabetes: a secondary analysis based on a Chinese cohort study: TyG index and incident diabetes. Lipids Health Dis. 2020;19(1):236. Doi: 10.1186/s12944-020-01403-7.


36. Lee D.Y., Lee E.S., Kim J.H., Park S.E. et al. Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study. PLoS One. 2016;11(9):e0163465. Doi: 10.1371/journal.pone.0163465.


37. Wang Q., Jokelainen J., Auvinen J., et al. Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: an interventional study. BMC Med. 2019;17(1):217. Doi: 10.1186/s12916-019-1440-4.


38. Abdul-Ghani M.A., Abdul-Ghani T., Ali N., Defronzo R.A. One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care. 2008;31(8):1650–55. Doi: 10.2337/dc08-0225.


39. Correia E.S., Godinho-Mota J.C.M., Schincaglia R.M., et al. Metabolic Syndrome in postmenopausal women: prevalence, sensibility, and specificity of adiposity indices. Clinical Nutrition Open Science. 2022;41:106–14. Doi: org/10.1016/j.nutos.2022.01.001


40. Seghieri M., Trico D., Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. Diabetes Metab. 2017;43(4):314–22. Doi: org/10.1016/j.diabet.2017.04.010.


41. Agarwal T., Lyngdoh T., Dudbridge F., et al. Causal relationships between lipid and glycemic levels in an Indian population: A bidirectional Mendelian randomization approach. PLoS One. 2020;15(1):e0228269. Doi: 10.1371/journal.pone.0228269.


42. Yu W., Zhou G., Fan B., et al. Temporal sequence of blood lipids and insulin resistance in perimenopausal women: the study of women’s health across the nation. BMJ Open Diab Res Care. 2022;10(2):e002653. Doi: 10.1136/bmjdrc-2021-002653.


43. Mahdavi-Roshan M., Shoaibinobarian N.., Noormohammadi M, et al. Inflammatory Markers and Atherogenic Coefficient: Early Markers of Metabolic Syndrome. Int J Endocrinol Metab. 2022;20(4):e127445. Doi: 10.5812/ijem-127445.


44. Pang S., Miao G., Zhou Y., et al. Addition of TyG index to the GRACE score improves prediction of adverse cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention: A retrospective study. Front Cardiovasc Med. 2022;9:957626. Doi: 10.3389/fcvm.2022.957626.


45. Lipke K., Kubis-Kubiak A., Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells. 2022;11(5):844. Doi: 10.3390/cells11050844.


46. Cho A.R., Kwon Y.J., Kim J.K. Pre-Metabolic Syndrome and Incidence of Type 2 Diabetes and Hypertension: From the Korean Genome and Epidemiology Study. J Pers Med. 2021;11(8):700. Doi: 10.3390/jpm11080700.


47. Strack C., Behrens G., Sag S., et al. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol Sex Differ. 2022;13(1):8. Doi: 10.1186/s13293-022-00416-4.


Об авторах / Для корреспонденции


Автор для связи: Людмила Александровна Руяткина, д.м.н., профессор, Новосибирский государственный медицинский университет, Новосибирск, Россия; larut@list.ru


ORCID: 
Руяткина Л.А. (Ruyatkina L.A.), https://orcid.org/0000-0002-6762-5238  
Руяткин Д.С. (Ruyatkin D.S.), https://orcid.org/0000-0003-3431-5943  
Щербакова Л.В. (Shcherbakova L.V.), https://orcid.org/0000-0001-9270-9188  


Похожие статьи


Бионика Медиа