Метаболически ассоциированная жировая болезнь печени: роль адеметионина


DOI: https://dx.doi.org/10.18565/pharmateca.2023.1-2.54-62

Полякова О.А., Козгунова Л.Д., Остроумова О.Д.

1) Российская медицинская академия непрерывного профессионального образования, Москва, Россия; 2) Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Москва, Россия
В начале 2020 г. международная экспертная группа предложила изменить номенклатуру неалкогольной жировой болезни печени (НАЖБП) на метаболически ассоциированную жировую болезнь печени (МАЖБП), чтобы лучше отразить основную патофизиологию НАЖБП как метаболически обусловленного заболевания и перейти к «положительным» диагностическим критериям, а не к критериям исключения. Спустя 2 года определение МАЖБП стало все чаще использоваться в медицинской литературе, и недавние исследования показали, что глобальная распространенность МАЖБП выше, чем НАЖБП, и у пациентов с МАЖБП больше метаболических сопутствующих заболеваний по сравнению с пациентами с НАЖБП, а новые данные также свидетельствуют о том, что смертность от всех причин и сердечно-сосудистых заболеваний может быть выше при МАЖБП по сравнению с НАЖБП. В связи с этим в настоящем обзоре обсуждаются критерии диагностики МАЖБП, особенности патогенеза заболевания и перспективы терапевтических стратегий, включая применение адеметионина.

Литература


1. Eslam M., Newsome P.N., Sarin S.K., et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202–9. Doi: 10.1016/j.jhep.2020.03.039.


2. Eslam M., Sanyal A.J., George J. International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999-2014.e1. Doi: 10.1053/j.gastro.2019.11.312.


3. Eslam M., Sarin S.K., Wong V.W., et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889–19. Doi: 10.1007/s12072-020-10094-2.


4. Burt A.D., Lackner C., Tiniakos D.G. Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin Liver Dis. 2015;35(3):207–20. Doi: 10.1055/s-0035-1562942.


5. Mendez-Sanchez N., Bugianesi E., Gish R.G., et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7(5):388–90. Doi: 10.1016/S2468-1253(22)00062-0.


6. Alharthi J., Gastaldelli A., Cua I.H. et al. Metabolic dysfunction-associated fatty liver disease: a year in review. Curr Opin Gastroenterol. 2022;38(3):251–60. Doi: 10.1097/MOG.0000000000000823.


7. Eslam M., Ahmed A., Despres J.P., et al. Incorporating fatty liver disease in multidisciplinary care and novel clinical trial designs for patients with metabolic diseases. Lancet Gastroenterol Hepatol. 2021;6(9):743–53. Doi: 10.1016/S2468-1253(21)00132-1.


8. Tokita Y., Maejima Y., Shimomura K., et al. Non-alcoholic Fatty Liver Disease Is a Risk Factor for Type 2 Diabetes in Middle-aged Japanese Men and Women. Intern Med. 2017;56(7):763–71. Doi:10.2169/internalmedicine.56.7115


9. Armstrong M.J., Adams L.A., Canbay A., Syn W.K. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59(3):1174–97. Doi: 10.1002/hep.26717/


10. Söderberg C, Stal P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51(2):595-602. DOI: 10.1002/hep.23314


11. Ekstedt M., Hagstrom H., Nasr P., et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61(5):1547–54. DOI: 10.1002/hep.27368


12. Liu Q., Zhao G., Li Q., et al. A comparison of NAFLD and MAFLD diagnostic criteria in contemporary urban healthy adults in China: a cross-sectional study. BMC Gastroenterol. 2022;22(1):471. Doi: 10.1186/s12876-022-02576-4.


13. Grabherr F., Grander C., Effenberger M., et al. MAFLD: what 2 years of the redefinition of fatty liver disease has taught us. Ther Adv Endocrinol Metab. 2022;13:20420188221139101. Doi: 10.1177/20420188221139101.


14. Sarin S.K., Eslam M., Fan J.G., et al. MAFLD, patient-centred care, and APASL. Hepatol Int. 2022;16(5):1032–34. Doi: 10.1007/s12072-022-10408-6.


15. Yamamura S., Eslam M., Kawaguchi T., et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40(12):3018–30. Doi: 10.1111/liv.14675.


16. Tilg H., Effenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol. 2020;17(7):387-388. Doi: 10.1038/s41575-020-0316-6


17. Lim G.E.H., Tang A., Ng C.H., et al. An Observational Data Meta-analysis on the Differences in Prevalence and Risk Factors Between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2021;S1542-3565(21)01276–73. Doi: 10.1016/j.cgh.2021.11.038.


18. Nguyen V.H., Le M.H., Cheung R.C., Nguyen M.H. Differential Clinical Characteristics and Mortality Outcomes in Persons With NAFLD and/or MAFLD. Clin Gastroenterol Hepatol. 2021;19(10):2172–81.e6. Doi: 10.1016/j.cgh.2021.05.029.


19. Kim D, Konyn P, Sandhu KK, et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol. 2021;75(6):1284–91. Doi: 10.1016/j.jhep.2021.07.035.


20. Lee H., Lee Y.H., Kim S.U., Kim H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin Gastroenterol Hepatol. 2021;19(10):2138–47.e10. Doi: 10.1016/j.cgh.2020.12.022.


21. Liang Y., Chen H., Liu Y., et al. Association of MAFLD With Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J Clin Endocrinol Metab. 2022;107(1):88–97. Doi: 10.1210/clinem/dgab641


22. Yoneda M., Yamamoto T., Honda Y., et al. Risk of cardiovascular disease in patients with fatty liver disease as defined from the metabolic dysfunction associated fatty liver disease or nonalcoholic fatty liver disease point of view: a retrospective nationwide claims database study in Japan. J Gastroenterol. 2021;56(11):1022–32. Doi: 10.1007/s00535-021-01828-6.


23. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Метаболически ассоциированная жировая болезнь печени – заболевание XXI века. Consilium Medicum. 2022;24(5):15–22.


24. Badmus O.O., Hillhouse S.A., Anderson C.D., et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond). 2022;136(18):1347–66. Doi: 10.1042/CS20220572.


25. Heeren J., Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50:101238. Doi: 10.1016/j.molmet.2021.101238.


26. Nikolic I, Leiva M, Sabio G. The role of stress kinases in metabolic disease. Nat Rev Endocrinol. 2020;16(12):697–716. Doi: 10.1038/s41574-020-00418-5.


27. Leiva M., Matesanz N., Pulgarin-Alfaro M., et al. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne). 2020;11:572089. Doi: 10.3389/fendo.2020.572089.


28. Rinaldi L., Pafundi P.C., Galiero R., et al. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel). 2021;10(2):270. Doi: 10.3390/antiox10020270.


29. Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P.Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75(18):3313-3327. Doi: 10.1007/s00018-018-2860-6


30. Newberry E.P., Xie Y., Kennedy S.M., et al. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology. 2006;44(5):1191–205. Doi: 10.1002/hep.21369.


31. Mukai T., Egawa M., Takeuchi T., et al. Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease. FEBS Open Bio. 2017;7(7):1009–16. Doi: 10.1002/2211-5463.12240.


32. Lu Y.C., Chang C.C., Wang C.P., et al. Circulating fatty acid-binding protein 1 (FABP1) and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Int J Med Sci. 2020;17(2):182–90. Doi: 10.7150/ijms.40417.


33. Auinger A., Valenti L., Pfeuffer M., et al. A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis. Horm Metab Res. 2010;42(12):854–59. Doi:10.1055/s-0030-1267186.


34. Buttet M., Poirier H., Traynard V., et al. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model. PLoS One. 2016;11(1):e0145626. Doi: 10.1371/journal.pone.0145626.


35. Miquilena-Colina M.E., Lima-Cabello E., Sanchez-Campos S., et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60(10):1394–402. Doi: 10.1136/gut.2010.222844.


36. Rada P., Gonzalez-Rodriguez A., Garcia-Monzon C., Valverde A.M. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11(9):802. Doi: 10.1038/s41419-020-03003-w.


37. Sanders F.W., Griffin J.L. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 2016;91(2):452–68. Doi: 10.1111/brv.12178.


38. Joshi-Barve S., Barve S.S., Amancherla K.,et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007;46(3):823–30. Doi: 10.1002/hep.21752.


39. Knebel B., Haas J., Hartwig S., et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One. 2012;7(2):e31812. Doi: 10.1371/journal.pone.0031812.


40. Iizuka K., Takao K., Yabe D. ChREBP-Mediated Regulation of Lipid Metabolism: Involvement of the Gut Microbiota, Liver, and Adipose Tissue. Front Endocrinol (Lausanne). 2020;11:587189. Doi: 10.3389/fendo.2020.587189.


41. Moreno-Fernandez M.E., Giles D.A., Stankiewicz T.E., et al. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight. 2018;3(6):e93626. Doi: 10.1172/jci.insight.93626.


42. Hinds T.D. Jr, Hosick P.A., Chen S, et al. Mice with hyperbilirubinemia due to Gilbert’s syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am J Physiol Endocrinol Metab. 2017;312(4):E244-E252. Doi: 10.1152/ajpendo.00396.2016.


43. Francque S., Verrijken A., Caron S., et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63(1):164–73. Doi: 10.1016/j.jhep.2015.02.019.


44. Hinds T.D. Jr, Creeden J.F., Gordon D.M., et al. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol. 2020;11:594574. Doi: 10.3389/fphar.2020.594574.


45. Charlton M., Sreekumar R., Rasmussen D., et al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology. 2002;35(4):898–904. Doi: 10.1053/jhep.2002.32527.


46. Mendez-Sanchez N., Arrese M., Zamora-Valdes D., Uribe M. Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int. 2007;27(4):423–33. Doi: 10.1111/j.1478-3231.2007.01483.x.


47. Киселева Е.В., Демидова Т.Ю. Неалкогольная жировая болезнь печени и сахарный диабет 2 типа: проблема сопряженности и этапности развития. Ожирение и метаболизм. 2021;18(3):313–19.


48. Newton J.L., Jones D.E., Henderson E., et al. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut. 2008;57(6):807–13. Doi: 10.1136/gut.2007.139303.


49. Wang C.H., Liu H.M., Chang Z.Y., et al. Losartan Prevents Hepatic Steatosis and Macrophage Polarization by Inhibiting HIF-1α in a Murine Model of NAFLD. Int J Mol Sci. 2021;22(15):7841. Doi: 10.3390/ijms22157841.


50. Kim M.Y., Cho M.Y., Baik S.K., et al. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis - a randomized open-label controlled study. Liver Int. 2012;32(6):977–87. Doi: 10.1111/j.1478–3231.2012.02774.x


51. Неалкогольная жировая болезнь печени у взрослых. Клинические рекомендации, утвержденные Минздравом России (2022 г.).


52. Полякова О.А., Остроумова О.Д., Ковалева Г.П.,Павлеева Е.Е. Коморбидность неалкогольной жировой болезни печени и сердечно-сосудистых заболеваний: фокус на адеметионин и урсодезоксихолевую кислоту. Медицинский алфавит. 2021;1(29):13-20.


53. Li Z., Agellon L.B., Allen T.M., et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3(5):321–31. Doi: 10.1016/j.cmet.2006.03.007.


54. Anstee Q.M., Day C.P. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012;57(5):1097–09. Doi: 10.1016/j.jhep.2012.04.041.


55. Mato J.M., Lu S.C.. Role of S-adenosyl-L-methionine in liver health and injury. Hepatology. 2007;45(5):1306–12. Doi: 10.1002/hep.21650.


56. Vergani L, Baldini F, Khalil M, et al. New Perspectives of S-Adenosylmethionine (SAMe) Applications to Attenuate Fatty Acid-Induced Steatosis and Oxidative Stress in Hepatic and Endothelial Cells. Molecules. 2020;25(18):4237. DOI: 10.3390/molecules25184237


57. Vendemiale G., Altomare E., Trizio T, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol. 1989;24(4):407–15. Doi: 10.3109/00365528909093067.


58. Virukalpattigopalratnam M.P., Singh T., Ravishankar A.C. Heptral (ademetionine) in patients with intrahepatic cholestasis in chronic liver disease due to non-alcoholic liver disease: results of a multicentre observational study in India. J Indian Med Assoc. 2013;111(12):856–59.


59. Барановский А.Ю., Райхельсон К.Л., Марчен-ко Н.В. Применение S-аденозилметионина (Гептрала®) в терапии больных неалкогольным стеатогепатитом. Клинические перспективы гастроэнтерологии, гепатологии. 2010;1:3–10.


60. Antoniv A., Antofiychuk N., Danylyshina T., et al. Clinical efficacy of S-adenosylmethionine in patients with non-alcoholic steatohepatitis and chronic kidney disease I-II stage. Georgian Med News. 2017;(273):31–6.


61. Baiming L. Observation of the efficacy of S-adenosylmethionine in the treatment of non-alcoholic fatty liver disease. Chinese Hepatology. 2011;16(5):350–51.


62. Guo T., Chang L., Xiao Y., Liu Q. S-adenosyl-L-methionine for the treatment of chronic liver disease: a systematic review and meta-analysis. PLoS One. 2015;10(3):1–17. Doi: 10.1371/journal.pone.0122124.


Об авторах / Для корреспонденции


Автор для связи: Ольга Александровна Полякова, к.м.н., ассистент кафедры терапии и полиморбидной патологии им. акад. М.С. Вовси, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; docpolyakova.olga@gmail.com


ORCID / eLibrary SPIN: 
О.А. Полякова (O.A. Polyakova), https://orcid.org/0000-0003-0491-8823 ; eLibrary SPIN: 5104-9117
Л.Д. Козгунова (L.D. Kozgunova), https://orcid.org/0000-0001-7234-9525 
О.Д. Остроумова (O.D. Ostroumova), https://orcid.org/0000-0002-0795-8225 ; eLibrary SPIN: 3910-6585


Похожие статьи


Бионика Медиа