DOI: https://dx.doi.org/10.18565/pharmateca.2022.14.21-26
Матушевская Ю.И.
Люберецкий кожно-венерологический диспансер, Люберцы, Московская область, Россия
1. Yazici A.C., Tamer L., Ikizoglu G., et al. GSTM1 and GSTT1 null genotypes as possible heritable factors of rosacea. Photodermatol Photoimmunol Photomed. 2006;22:208–10. Doi: 10.1111/j.1600-0781.2006.00220.x. 2. Srivastava D.S.L., Jain V.K., Verma P., Yadav J.P. Polymorphism of glutathione S-transferase M1 and T1 genes and susceptibility to psoriasis disease: A study from North India. Indian J. Dermatol Venereol Leprol. 2018;84(1):39–44. Doi: 10.4103/ijdvl.IJDVL_1128_16. 3. Guo H., Huang Y., Wu J., et al. Correlation analysis of the HLA-DPB1*05:01 and BTNL2 genes within the histocompatibility complex region with a clinical phenotype of psoriasis vulgaris in the Chinese Han population. J Gene Med. 2017;19(9–10). Doi: 10.1002/jgm.2961. 4. Chang A.L.S., Raber I., Xu J., et al. Assessment of the genetic basis of rosacea by genome- wide association study. J Invest Dermatol. 2015;135(6):1548–55. Doi: 10.1038/ jid.2015.53. 5. Rhodes D.A., Reith W., Trowsdale J. Regulation of Immunity by Butyrophilins. Ann. Rev. Immunol. 2016;34:151–72. Doi: 10.1146/annurev- immunol-041015-055435. 6. Chaperon M., Pacheco Y., Maucort-Boulch D., et al. BTNL2 gene polymorphism and sarcoid uveitis. Br J Ophthalmol. 2019. pii: bjophthalmol-2018-312949. Doi: 10.1136/ bjophthalmol-2018-312949. 7. Tolentino Y.F., Elia P.P., Foga a H.S., et al. Common NOD2/CARD15 and TLR4 Polymorphisms Are Associated with Crohn’s Disease Phenotypes in Southeastern Brazilians. Dig Dis Sci. 2016;61(9):2636–47. Doi: 10.1007/s10620- 016-4172-8. 8. Marrani E., Cimaz R., Lucherini O.M., et al. The common NOD2/CARD15 variant P268S in patients with non-infectious uveitis: a cohort study. Pediatr Rheumatol Online J. 2015;13(1):38. Doi: 10.1186/s12969-015-0037-5. 9. Angeletti S., Galluzzo S., Santini D., et al. NOD2/CARD15 polymorphisms impair innate immunity and increase susceptibility to gastric cancer in an Italian population. Hum. Immunol. 2009;70(9):729–32. Doi: 10.1016/j. humimm.2009.04.026. 10. Salzer S., Kresse S., Hirai Y., et al. Cathelicidin peptide LL-37 increases UVB-triggered inflammasome activation: possible implications for rosacea. J Dermatol Sci. 2014;76(3):173–79. Doi: 10.1016/j.jdermsci.2014.09.002. 11. Yamasaki K., Gallo R.L. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp. Proc. 2011;15(1):12–5. Doi: 10.1038/jidsymp.2011.4. 12. Gokiınar N.B., Karabulut A.A., Onaran Z., et al. Elevated Tear Human Neutrophil Peptides 1-3, Human Beta Defensin-2 Levels and Conjunctival Cathelicidin LL-37 Gene Expression in Ocular Rosacea. Ocul Immunol Inflamm. 2019;27(7):1174–83. Doi: 10.1080/09273948.2018.1504971. 13. Yamasaki K., Kanada K., Macleod D.T., et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131(3):688–97. Doi: 10.1038/ jid.2010.351. 14. Meyer-Hoffert U., Schroder J.M. Epidermal proteases in the pathogenesis of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):16–23. Doi: 10.1038/jidsymp.2011.2. 15. Muto Y., Wang Z., Vanderberghe M., et al. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134(11):2728–36. Doi: 10.1038/ jid.2014.222. 16. Zaidi A.K., Spaunhurst K., Sprockett D., et al. Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol. 2018;27(3):295–8. Doi: 10.1111/exd.13491. 17. Clanner-Engelshofen B.M., Bernhard D., Dargatz S., et al. S2k guideline: Rosacea. J Dtsch Dermatol Ges. 2022;20(8):1147–65. Doi: 10.1111/ddg.14849. 18. Searle T., Ali F.R., Carolides S., Al-Niaimi F. Rosacea and Diet: What is New in 2021? J. Aesthet. Dermatol. 2021;14(12):49–54. 19. Silverman H.A., Chen A., Kravatz N.L., et al. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol. 2020;11:590261. Doi: 10.3389/ fimmu.2020.590261. 20. Ziolkowski N., Kitto S.C., Jeong D., et al. Psychosocial and quality of life impact of scars in the surgical, traumatic and burn populations: a scoping review protocol. BMJ. Open. 2019;9(6):e021289. Doi: 10.1136/bmjopen-2017-021289. 21. Anderson R.R., Parrish J.A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Sci. 1983;220(4596):524–27. Doi: 10.1126/ science.6836297. 22. Alam M., Voravutinon N., Warycha M., et al. Comparative effectiveness of nonpurpuragenic 595-nm pulsed dye laser and microsecond 1064- nm neodymium:yttrium-aluminum-garnet laser for treatment of diffuse facial erythema: A double- blind randomized controlled trial. J Am Acad Dermatol. 2013;69(3):438–43. Doi: 10.1016/j. jaad.2013.04.015. 23. Campos M.A., Sousa A.C., Varela P., et al. Comparative effectiveness of purpuragenic 595 nm pulsed dye laser versus sequential emission of 595 nm pulsed dye laser and 1,064 nm Nd:YAG laser: a double-blind randomized controlled study. Acta Dermatovenerol Alp Pannonica Adriat. 2019;28(1):1–5. 24. Kwon W.J., Park B.W., Cho E.B., et al. Comparison of efficacy between long- pulsed Nd:YAG laser and pulsed dye laser to treat rosacea-associated nasal telangiectasia. J Cosmet Laser Ther. 2018;20(5):260–64. Doi: 10.1080/14764172.2017.1418510. 25. Salem S.A., Abdel Fattah N.S., Tantawy S.M., et al. Neodymium-yttrium aluminum garnet laser versus pulsed dye laser in erythemato-telangiectatic rosacea: comparison of clinical efficacy and effect on cutaneous substance (P) expression. J Cosmet Dermatol. 2013;12(3):187–94. Doi: 10.1111/ jocd.12048. 26. Handler M.Z., Bloom B.S., Goldberg D.J. IPL vs PDL in treatment of facial erythema: A split-face study. J. Cosmet. Dermatol. 2017;16(4):450–53. Doi: 10.1111/jocd.12365. 27. Kim B.Y., Moon H.R., Ryu H.J. Comparative efficacy of short-pulsed intense pulsed light and pulsed dye laser to treat rosacea. J Cosmet Laser Ther. 2019;21(5):291–96. Doi: 10.1080/14764172.2018.1528371. 28. Neuhaus I.M., Zane L.T., Tope W.D. Comparative efficacy of nonpurpuragenic pulsed dye laser and intense pulsed light for erythematotelangiectatic rosacea. Dermatol Surg. 2009;35(6):920–28. Doi: 10.1111/j.1524-4725.2009.01156.x. 29. Nymann P., Hedelund L., Haedersdal M. Long- pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial. J Eur Acad Dermatol. Venereol. 2010;24(2):143–46. Doi: 10.1111/j.1468- 3083.2009.03357.x. 30. Tanghetti E.A. Split-face randomized treatment of facial telangiectasia comparing pulsed dye laser and an intense pulsed light handpiece. Lasers Surg Med. 2012;44(2):97–102. Doi: 10.1002/ lsm.21151. 31. West T.B., Alster T.S. Comparison of the long-pulse dye (590-595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg. 1998;24(2):221–26. Doi: 10.1111/j.1524-4725.1998.tb04140.x. 32. Kim S.J., Lee Y., Seo Y.J., et al. Comparative Efficacy of Radiofrequency and Pulsed Dye Laser in the Treatment of Rosacea. Dermatol Surg. 2017;43(2):204–9. Doi: 10.1097/ DSS.0000000000000968. 33. Paasch U., Zidane M., Baron J.M., et al. S2k guideline: Laser therapy of the skin. J Dtsch Dermatol Ges. 2022;20(9):1248–67. Doi: 10.1111/ddg.14879. 34. Husein-ElAhmed H., Steinhoff M. Light-based therapies in the management of rosacea: a systematic review with meta-analysis. Int J Dermatol. 2022;61(2):216–25. Doi: 10.1111/ ijd.15680. 35. Luo Y., Luan X.L., Zhang J.H., et al. Improved telangiectasia and reduced recurrence rate of rosacea after treatment with 540 nm-wavelength intense pulsed light: A prospective randomized controlled trial with a 2-year follow-up. Exp Ther Med. 2020;19(6):3543–50. Doi: 10.3892/ etm.2020.8617. 36. Liu J., Liu J., Ren Y., et al. Comparative efficacy of intense pulsed light for different erythema associated with rosacea. J Cosmet Laser Ther. 2014;16(6):324–27. Doi: 10.3109/14764172.2014.957218. 37. Шаршунова А.А., Круглова Л.С., Котенко К.В., Софинская Г.В. Этиопатогенез и возможности лазеротерапии эритематозно-телеангиэктатического подтипа розацеа. Физиотерапия, бальнеология и реабилитация. 2017;16(6):284–90. 38. Toyos R., Desai N.R., Toyos M., Dell S.J. Intense pulsed light improves signs and symptoms of dry eye disease due to meibomian gland dysfunction: A randomized controlled study. PLoS One. 2022;17(6):e0270268. Doi: 10.1371/journal. pone.0270268. 39. Amaral M.T.S.S.D., Haddad A., Nahas F.X., et al. Impact of Fractional Ablative Carbon Dioxide Laser on the Treatment of Rhinophyma. Aesthet Surg. J. 2019;39(4):NP68–75. Doi: 10.1093/ asj/sjy234. 40. Kassirer S.S., Gotkin R.H., Sarnoff D.S. Treatment of Rhinophyma With Fractional CO2 Laser Resurfacing in a Woman of Color: Case Report and Review of the Literature. J Drugs Dermatol. 2021;20(7):772–75. Doi: 10.36849/JDD. C702. 41. Bassi A., Campolmi P., Dindelli M., et al. Laser surgery in rhinophyma. J. Ital. Dermatol. Venereol. 2016;151(1):9–16. 42. Badawi A., Osman M., Kassab A. Novel Management of Rhinophyma by Patterned Ablative 2940nm Erbium:YAG Laser. Clin Cosmet Investig Dermatol. 2020;13:949–55. Doi: 10.2147/CCID.S286847. 43. Li A., Fang R., Mao X., Sun Q. Photodynamictherapy in the treatment of rosacea: A systematic review. Photodiagnos Photodyn Ther. 2022;38:102875. Doi: 10.1016/j.pdpdt.2022.102875. 44. Friedmann D.P., Goldman M.P., Fabi S.G., Guiha I. Multiple sequential light and laser sources to activate aminolevulinic acid for rosacea. J Cosmet Dermatol. 2016;15(4):407–12. Doi: 10.1111/ jocd.12231.
Автор для связи: Юлия Игоревна Матушевская, к.м.н., главный врач, Люберецкий кожно-венерологический диспансер, Люберцы, Московская область, Россия; yuliya-matushevskaya@yandex.ru; ORCID: https://orcid.org/0000-0001-5995-6689