Однофакторное прогнозирование рисков развития и прогрессирования заболеваний сердечно-сосудистой системы


DOI: https://dx.doi.org/10.18565/pharmateca.2024.4.48-53

Дербенева С.А., Погожева А.В., Шмелева С.В., Сабанчиева Ж.Х.

1) Федеральный исследовательский центр питания и биотехнологии, Москва, Россия; 2) Московский государственный университет технологий и управления им. К.Г. Разумовского, Москва, Россия; 3) Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия
Обоснование. Профилактика сердечно-сосудистых заболеваний требует своевременного выявления людей с повышенным риском для проведения эффективных диетических мероприятий, мер по изменению образа жизни или медикаментозного лечения.
Цель исследования: изучить клинико-инструментальные и лабораторные показатели как маркеры развития и прогрессирова-ния заболеваний сердечно-сосудистой системы (ССС).
Методы. Оценка фактического питания и физической активности в домашних условиях, антропометрические исследования, оценка композиционного состава тела, исследование энергетического обмена с определением суточной экскреции азота, исследование показателей метаболизма покоя и обмена макронутриентов. Лабораторные исследования включили изучение общего анализа крови, общего анализа мочи, биохимических маркеров липидного, белкового и углеводного обменов, параметров функциональной активности гепатобилиарной системы, свертывающей системы крови, показателей гормонального профиля, электролитного обмена, витаминного статуса, продуктов перекисного окисления липидов и ферментов системы антиоксидантной защиты.
Результаты. У 956 пациентов с заболеваниями ССС выявлены конкретные факторы прогнозирования развития ишемической болезни сердца (ИБС): безболевой ишемии миокарда, постинфарктного кардиосклероза, состояния после оперативного лечения, стенокардии напряжения I функционального класса. Прогнозирование рисков развития того или иного клинического события от конкретных количественных или бинарных показателей метаболического статуса пациентов осуществлялось с помощью критерия Хи-квадрат Пирсона.
Заключение. В одном клиническом случае ИБС ключевыми установлены биомаркеры метаболического статуса, в другом случае – параметры клинического течения атеросклеротической болезни, в третьем и четвертом – их совокупность. Принимая во внимание наличие этих факторов, возможно проводить мероприятия по их адекватной и своевременной коррекции, тем самым предотвращая развитие и прогрессирование данных нозологических форм.

Литература


1. Eckel R.H., Jakicic J.M., Ard J.D. American College of Cardiology/American Heart Association Practice Guidelines Task Force. 2013 AHA/ACC Guidelines for Lifestyle Management to Reduce Cardiovascular Disease Risk: American College of Cardiology/American Heart Association Practice Guidelines Task Force Report. Circulation. 2014;129(Appendix 2):S76–99. Doi: 10.1161/01.CIR.0000437740.48606.d1.


2. World Health Organization. Global status report on non-communicable diseases. URL: http://apps.who.int/iris/bitstream/10665/44579/1/9789240686458_eng. pdf. (20 June 2018).


3. Holt A., Batinica B., Liang J., et al. Development and validation of cardiovascular risk prediction equations in 76 000 people with known cardiovascular disease. Eur J Prev Cardiol. 2024;31(2):218–27. Doi: 10.1093/eurjpc/zwad314.


4. Goff D.C., Lloyd-Jones D.M., Bennett G., et al. 2013 ACC/AHA Guidelines for Cardiovascular Risk Assessment: A Report from the American College of Cardiology/American Heart Association Practice Guidelines. Circulation. 2014;129:S49–73. Doi: 10.1161/01.cir.0000437741.48606.98.


5. WHO working group on CVD risk matrix. World Health Organization Cardiovascular Disease Risk Charts: Revised Models for Risk Assessment in 21 Regions of the World. Lancet Glob Health 2019;7:e1332–45. Doi: 10.1016/S2214-109X(19)30318-3.


6. Hippisley-Cox J., Copeland K., Tigrovoy. Development and validation of QRISK3 risk prediction algorithms for estimating future cardiovascular disease risk: a prospective cohort study. BMJ. 2017;357:J2099. Doi: 10.1136/bmj.j2099.


7. Helgason H., Eiriksdуttir T., Ulfбrsson M.O., et al. Evaluation of large-scale proteomics for predicting cardiovascular events. JAMA. 2023;330(8):725–35. Doi: 10.1001/jama.2023.13258.


8. Lazceroni D., Coruzzi P. Risk stratification in secondary prevention of cardiovascular diseases. Minerva Cardioangiol. 2018;66(4):471–76. Doi: 10.23736/S0026-4725.18.04648-0.


9. Benincasa G., Suades R., Padro T., et al. Bioinformatic platforms for the clinical stratification of the natural history of atherosclerotic cardiovascular diseases. Eur Heart J Cardiovasc Pharmacother. 2023;9(8):758–69. Doi: 10.1093/ehjcvp/pvad059.


10. Akya R.K., Leonardi-B J., Asselbergs F.V., et al. Prediction of major adverse cardiovascular events for secondary prevention: a protocol for systematic review and meta-analysis of risk prediction models. BMJ Open. 2020;10(7):E034564. Doi: 10.1136/bmjopen-2019-034564.


Об авторах / Для корреспонденции


Автор для связи: Светлана Васильевна Шмелева, д.м.н., профессор, Московский университет технологий и управления им. К.Г. Разумовского, Москва, Россия; 89151479832@mail.ru


ORCID: 
С.А. Дербенева (S.A. Derbeneva), https://orcid.org/0000-0003-1876-1230
А.В. Погожева (A.V. Pogozheva), https://orcid.org/0000-0003-4619-291
С.В. Шмелева (S.V. Shmeleva), https://orcid.org/0000-0003-0390-194X
Ж.Х. Сабанчиева (Zh.Kh. Sabanchieva), https://orcid.org/0000-0002-9103-0648


Похожие статьи


Бионика Медиа