Исследование фармакодинамики технологии лечения резистентных бактериальных инфекций с использованием квантовых точек


DOI: https://dx.doi.org/10.18565/pharmateca.2023.9-10.122-127

Пономарев В.О., Омельяновский В.В.

1) АО Екатеринбургский центр МНТК «Микрохирургия глаза», Екатеринбург, Россия; 2) Центр экспертизы и контроля качества медицинской помощи, Москва, Россия
Обоснование. Проблема устойчивости микроорганизмов к противомикробным препаратам, в частности штаммов с множественной лекарственной устойчивостью и широкой лекарственной устойчивостью, представляет первостепенную угрозу для здравоохранения во всем мире, вызывая около 1,3 млн летальных исходов ежегодно. Данная тенденция диктует необходимость поиска новых подходов к лечению заболеваний, инициированных штаммами антибиотикорезистентной микрофлорой. За последние годы одним из перспективных направлений в данной области является исследование антиинфекционной активности наночастиц, в частности квантовых точек (КТ). Механизмы антиинфекционной активности КТ определяются их способностью к проникновению внутрь бактериальной клетки за счет сверхмалого размера (3–5 нм) и ее разрушению за счет дозированного производства активных форм кислорода, сопряженных со свободными электронами парами на внешнем энергетическом уровне КТ.
Цель исследования: исследование фармакодинамики металлических наночастиц (КТ) при взаимодействии с бактериальной клеткой для определения потенциальной перспективы лечения резистентной бактериальной инфекции.
Методы. В качестве метода исследования особенностей фармакодинамики КТ при взаимодействии с бактериальной клеткой применялась растровая и просвечивающая электронная микроскопия. В качестве объекта исследования брались водный раствор металлических КТ InP/ZnSe/ZnS 0,1 мл в концентрации 0,001% и культура митициллин-резистентного золотистого стафилококка. Образцы исследовались в чистом виде, а также после смешивания с раствором КТ в равных пропорциях во временных интервалах через 1, 5, 10, 30, 60 и 120 минут соответственно для оценки особенностей фармакодинамики. Критерием клинической активности образцов служило определение зон задержки роста диско-диффузионным методом.
Результаты. В ходе проведенного исследования установлено, что КТ свободно проникают через клеточную мембрану бактериальной клетки; первые признаки разрушения клетки с выходом ее содержимого начинают визуализироваться через 30 минут наблюдения; последующая динамика разрушения клеток сопровождается генерализованным выходом содержимого в межклеточное пространство, изменением их формы и объема в течении 60–120 минут, что указывает на бактерицидный эффект. Заключение. Полученные результаты демонстрируют перспективность дальнейших исследований, направленных на изучение технологии сочетанного (конъюгированного) использования КТ с актуальными антиинфекционными агентами для повышения их антиинфекционной активности, снижения риска селекции штаммов с множественной лекарственной устойчивостью и перспективой снижения затрат на здравоохранение.

Литература


1. Algammal A.M., Mabrok M., Sivaramasamy E., et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep. 2020;10:15961. Doi:10.1038/s41598-020-72264-4.


2. Al-Kadmy I.M., Ibrahim S.A., Al-Saryi N., et al. Prevalence of genes involved in colistin resistance in Acinetobacter baumannii: First report from Iraq. Microb Drug Resist. 2020;26:616–22. Doi: 10.1089/mdr.2019.0243.


3. CDC. Antimicrobial (AR) Threats Report. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 1 December 2022).


4. Nageeb W.M., Hetta H.F. The predictive potential of different molecular markers linked to amikacin susceptibility phenotypes in Pseudomonas aeruginosa. PLoS ONE 2022;17:e0267396. Doi: 10.1371/journal.pone.0267396.


5. Algammal A.M., Alfifi K.J., Mabrok M., et al. Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes. Infect. Drug Resist. 2022;15:2167–85. Doi:10.2147/IDR.S365254.


6. Hamad A.A., Sharaf M., Hamza M., et al. Investigation of the Bacterial Contamination and Antibiotic Susceptibility Profile of Bacteria Isolated from Bottled Drinking Water. Microbiol Spectr. 2022;10:e0151621. Doi: 10.1128/spectrum.01516-21.


7. Algammal A.M., Abo Hashem M.E., Alfifi K.J., et al. Sequence Analysis, Antibiogram Profile, Virulence and Antibiotic Resistance Genes of XDR and MDR Gallibacterium anatis Isolated from Layer Chickens in Egypt. Infect. Drug Resist. 2022;15:4321–34. Doi: 10.2147/IDR.S377797.


8. Meshaal A.K., Hetta H.F., Yahia R., et al. In Vitro Antimicrobial Activity of Medicinal Plant Extracts against Some Bacterial Pathogens Isolated from Raw and Processed Meat. Life 2021;11:1178. Doi: 10.3390/life11111178.


9. Michael C.A., Dominey Howes D., Labbate M. The antibiotic resistance cri sis: causes, consequences, and management. Front Public Health. 2014;2:145. Doi: 10.3389/fpubh.2014.0014548.


10. Piddock L.J. The crisis of no new antibiotics – what is the way forward? Lancet Infect Dis. 2012;12(3):249–53. Doi: 10.1016/S1473 3099(11)70316 449.


11. Lushniak B.D. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–16. Doi:10.1177/003335491412900402.


12. Khalil M.A., Ahmed F.A., Elkhateeb A.F., et al. Virulence characteristics of biofilm-forming acinetobacter baumannii in clinical isolates using a Galleria Mellonella Model. Microorganisms 2021;9:2365. DOI:10.3390/microorganisms9112365.


13. Algammal A.M., Hetta H.F., Elkelish A., et al. Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255. Doi: 10.2147/IDR.S272733.


14. Kareem S.M., Al-Kadmy I.M., Kazaal S.S., et al. Detection of gyra and parc mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae. Infect. Drug Resist. 2021;14:555. Doi: 10.2147/IDR.S275852.


15. Abd El-Baky R.M., Masoud S.M., Mohamed D.S., et al. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020;13:323. Doi: 10.2147/IDR.S238811.


16. Ovung A., Bhattacharyya J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021:13:259–72. Doi: 10.1007/s12551-021-00795-9.


17. Khalil M.A., Ahmed F.A., Elkhateeb A.F., et al. Virulence characteristics of biofilm-forming acinetobacter baumannii in clinical isolates using a Galleria Mellonella Model. Microorganisms 2021;9:2365. Doi: 10.3390/microorganisms9112365.


18. Courtney C.M., Goodman S.M., Nagy T.A., et al. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci Adv. 2017;3(10):1–10. Doi: 10.1126/sciadv.1701776.


19. Courtney C.M., Goodman S.M., McDaniel J.A., et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater. 2016;15:529–534. Doi: 10.1038/nmat4542.


20. Shobha, G., Moses V., Ananda S. Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Invent. 2014;3:6–28. Doi: 10.3390/app12010141.


21. Jaworski S., Wierzbicki M., Sawosz E., et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res Lett. 2018;13:116. Doi: 10.1186/s11671-018-2533-2.


22. Mba I.E., Sharndama H.C., Osondu-Chuka, G.O. et al. Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): A current update. Infect. Dis. 2021;53:559–80. Doi: 10.1080/23744235.2021.1916071.


23. Abid S.A., Muneer A.A., Al-Kadmy I.M., et al. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021;273:119117. Doi: 10.1016/j.lfs.2021.119117.


24. Mohler J.S., Sim, W., Blaskovich, M.A., et al. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol. Adv. 2018;36:1391–411. Doi: 10.1016/j.biotechadv.2018.05.004.


25. Merrifield R.C., Stephan C., Lead J.R. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles. Talanta. 2017;162:130–34. Doi: 10.1016/j.talanta.2016.09.070.


26. Rajeshkumar S., Bharath L. Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem.-Biol Interact. 2017;273:219–27. Doi: 10.1016/j.cbi.2017.06.019.


27. Gupta A., Mumtaz S., Li C.-H., at al. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48:415–27. Doi: 10.1039/c7cs00748e.


28. Muthukrishnan L., Chellappa M., Nanda A. Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens. J Photochem Photobiol B Biol. 2019;194:119–27. Doi: 10.1016/j.jphotobiol.2019.03.021


29. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomed. 2017;12:1227. Doi: 10.2147/IJN.S121956.


30. Slavin Y.N., Asnis J., Hafeli U.O., et al. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15:65. Doi: 10.1186/s12951-017-0308-z.


31. Wang X., Du Y., Fan L, et al. Chitosan-metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polym Bull. 2005;55:105–13. Doi: 10.1007/s00289-005-0414-1.


32. NatanM., Banin E. From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017;41:302–22. Doi: 10.1093/femsre/fux003.


33. Golkar Z., Bagazra O., Pace D.G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–36. Doi: 10.3855/jidc.3573.


34. Gould I.M., Bal A.M. New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence. 2013;4(2):185–91. Doi: 10.4161/viru.22507.


35. Viswanathan V.K. Off-label abuse of antibiotics by bacteria. Gut Microbes. 2014;5(1):3–4. Doi: 10.4161/gmic.28027.


36. Ragheb M.N., Thomason M.K., Hsu C., et al. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell. 2019;73(1):157–65.e5. Doi: 10.1016/j.molcel.2018.10.015.


37. Prasetyoputri A., Jarrad A.M., Cooper M.A., et al. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol. 2019;27(4):339–54. Doi: 10.1016/j.tim.2018.10.007.


Об авторах / Для корреспонденции


Автор для связи: Вячеслав Олегович Пономарев, к.м.н., зам. генерального директора по научно-клинической работе АО «Екатеринбургский центр МНТК “Микрохирургия глаза”», Екатеринбург, Россия; Ponomarev-mntk@mail.ru 


ORCID:
В.О. Пономарев (Ponomarev V.O.), https://orcid.org/0000-0002-2353-9610
В.В. Омельяновский (Omelyanovsky V.V.), https://orcid.org/0000-0003-1581-0703


Похожие статьи


Бионика Медиа