DOI: https://dx.doi.org/10.18565/pharmateca.2023.1-2.221-225
Макарова Т.П., Давлиева Л.А., Мельникова Ю.С., Хуснутдинова Д.Р.
1) Казанский государственный медицинский университет, Казань, Россия; 2) Детская республиканская клиническая больница, Казань, Россия
1. Labonte J., Bkaily G., D'Orleans-Juste P. Endothelin-B-receptors-dependent-inhibition of platelet aggregation in the CD-1 mouse. J Cardiovasc Pharmacol. 2000;34(1):184–86. Doi: 10.1097/00005344-200036051-00056. 2. Rebholz C.M., Harman J.L., Grams M.E., et al. Association between Endothelin-1 Levels and Kidney Disease among Blacks. J Am Soc Nephrol. 2017;28(11):3337–44. Doi: 10.1681/ASN.2016111236. 3. Kohan D.E. Role of collecting duct endothelin in control of renal function and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2013;305(7):659–68. Doi: 10.1152/ajpregu.00345.2013. 4. Saleh M.A., Boesen E.I., Pollock J.S., et al. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension. 2010;56(5):942–49. Doi: 10.1161/HYPERTENSIONAHA.110.156570. 5. Jin J., Sison K., Li C., et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151(2):384–99. Doi: 10.1016/j.cell.2012.08.037. 6. De Miguel C., Pollock D.M., Pollock J.S. Endothelium-derived ET-1 and the development of renal injury. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1071–73. Doi: 10.1152/ajpregu.00142.2015. 7. Ignarro L.J., Buga G.M., Wood K.S., et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci.1987;84(24):9265–69. Doi: 10.1073/pnas.84.24.9265. 8. Cyr A.R., Huckaby L.V., Shiva S.S., Zuckerbraun B.S. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36(2):307–21. Doi: 10.1016/j.ccc.2019.12.009. 9. Martens C.R., Edwards D.G. Peripheral vascular dysfunction in chronic kidney disease. Cardiol Res Pract. 2011;2011:1–9. Doi: 10.4061/2011/267257. 10. Schmidt R.J., Baylis C. Total nitric oxide production is low in patients with chronic renal disease. Kidney Int. 2000;58(3):1261–66. Doi: 10.1046/j.1523-1755.2000.00281.x. 11. Schmidt R.J., Yokota S., Tracy T.S., et al. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. Am J Physiol-Ren Physiol. 1999;276(5):F794–97. Doi: 10.1152/ajprenal.1999.276.5.F794. 12. Bohm F., Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res. 2007;76(1):8–18. Doi: 10.1016/j.cardiores.2007.06.004. 13. Catar R., Moll G., Kamhieh-Milz J., et al. Expanded Hemodialysis Therapy Ameliorates Uremia-Induced Systemic Microinflammation and Endothelial Dysfunction by Modulating VEGF, TNF-α and AP-1 Signaling. Front Immunol. 2021;12:774052. Doi: 10.3389/fimmu.2021.774052.
Автор для связи: Макарова Тамара Петровна, д.м.н., профессор кафедры госпитальной педиатрии, Казанский государственный медицинский университет, Казань, Россия; makarova-kgmu@mail.ru ORCID:
Т.П. Макарова (T.P. Makarova), https://orcid.org/0000-0002-5722-8490
Л.А. Давлиева (L.A. Davlieva), https://orcid.org/0000-0002-9816-1309
Ю.С. Мельникова (Yu.S. Melnikova), https://orcid.org/0000-0001-6633-6381