Предикторы тяжелого течения заболевания и высокой летальности у пациентов с COVID-19 и сахарным диабетом


DOI: https://dx.doi.org/10.18565/pharmateca.2021.4.10-15

М.З. Иванова (1), И.Б. Журтова (2), С.Х. Сижажева (2), А.М. Губачикова (2)

1) Клиническая больница № 1 Управления делами Президента РФ, Москва, Россия; 2) Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия
Ряд исследований, посвященных изучению новой коронавирусной инфекции COVID-19 (COronaVIrus Disease 2019), продемонстрировал наиболее тяжелое течение заболевания у пациентов с сахарным диабетом (СД). Сочетаясь с другими факторами риска, гипергликемия может потенцировать иммунные и воспалительные реакции, утяжеляя течение COVID-19 с возможным летальным исходом. Большинство из этих выводов предварительные и требуют дальнейших исследований. Высокая смертность больных COVID-19 и СД определяет актуальность анализа факторов риска неблагоприятных исходов заболевания для обоснования тактики ведения пациентов данной категории.
Ключевые слова: сахарный диабет, SARS-CoV-2, COVID-19, ангиотензин-превращающий фермент, тяжелое течение, летальность

Литература


1. Verity R., et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet. Infect Dis. 2020;20:669–77. Doi: 10.1016/S1473-3099(20)30243-7.


2. Perez-Saez J., et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet. Infect Dis. 2020;S1473-3099(20)30584-3. Doi: 10.1016/S1473-3099(20)30584-3.


3. Перетимин Г. (при участии Ткачева И.). Число умерших россиян COVID-19 превысило 200 тыс. человек. РБК, 05.03.2021.


4. Chen N., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. Doi: 10.1016/S0140-6736(20)30211-7.


5. Goyal P., et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382:2372–374. Doi: 10.1056/NEJMc2010419.


6. Zhang H., Penninger J.M., Li Y., et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Int Care Med. 2020;46:586–90. Doi: 10.1007/s00134-020-05985-9.


7. Walls A.C., Park Y.J., Tortorici M.A., et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020.


8. Li W., Moore M.J., Vasilieva N., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–54. Doi:10.1038/nature02145.


9. Liu F., Long X., Zou W., et al. Highly ACE2 Expression in Pancreas May Cause Pancreas Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020 Aug; 18(9): 2128–2130.e2. doi: 10.1101/2020.02.28.20029181.


10. Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;21(8):3003. doi: 10.3390/ijms21083003.


11. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet. Respir Med. 2020;8(5):475–81. Doi:10.1016/S2213-2600(20)30079-5.


12. Zhang J.J., Dong X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi: 10.1111/all.14238.


13. Huang C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. Doi: 10.1016/S0140-6736(20)30183-5.


14. Zhang W., Xu Y.Z., Liu B., et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet induced nonalcoholic steatohepatitis. Sci World J. 2014;2014:603409. Doi: 10.1155/2014/603409.


15. Fernandez C., Rysa J., Almgren P., et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284:377–87. Doi: 10.1111/joim.12783.


16. Chen X., Hu W., Ling J., et al. Hypertension and diabetes delay the viral clearance in COVID-19 patients (Preprint). medRxiv: 2020.2003.2022.20040774, 2020. doi: 10.1101/ 2020.03.22.20040774.


17. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–42. Doi:10.1001/jama.2020.2648.


18. Mehta, McAuley D.F., Brown M., et al. Across Speciality Collaboration UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. Doi: 10.1016/S0140-6736(20)30628-0.


19. Yang J., Zheng Y., Gou X., et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect. Dis. 2020;94:91–5. Doi: 10.1016/j.ijid.2020.03.017.


20. Шестакова М.В., Мокрышева Н.Г., Дедов И.И. Сахарный диабет в условиях вирусной пандемии COVID-19: особенности течения и лечения. Сахарный диабет. 2020;23(2):132–9.


21. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39. doi: 10.1007/s00281-017-0629-x.


22. Wang S., et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study. Diabetol. 2020;63:2102–2111. doi: 10.1007/s00125-020-05209-1.


23. Bode B., Garrett V., Messier J., et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diab Sci Technol. 2020:1–9.


24. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Respir Med. 2020;8:420–22. doi: 10.1016/S2213-2600(20)30076-X.


25. Codo A.C., et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020;32:437–46.e5. Doi: 10.1016/j.cmet.2020.07.007.


26. Zhu, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-1077.e3. Doi: 10.1016/j.cmet.2020.04.021.


27. Critchley J.A., et al. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diab Care. 2018;41:2127–35. Doi: 10.2337/dc18-0287.


28. Wu L., Girgis C.M., Cheung N.W. COVID-19 and diabetes: insulin requirements parallel illness severity in critically unwell patients. Clin Endocrinol. 2020;93:390–93. Doi: 10.1111/cen.14288.


29. Hadjadj J., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Sci. 2020;369:718–24. Doi: 10.1126/science.abc6027.


30. Zhou F., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62. Doi: 10.1016/S0140-6736(20)30566-3.


31. Chen I.Y., Moriyama M., Chang M.F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. Doi: 10.3389/fmicb.2019.00050.


32. Tang X., et al. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020;158:195–205. Doi: 10.1016/j.chest.2020.03.032.


33. Vaduganathan M., et al. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382:1653–59. Doi: 10.1056/NEJMsr2005760.


34. Sestan M., et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity. 2018;49:164–77.e6. Doi: 10.1016/j.immuni.2018.05.005.


35. Zeng Z., et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care. 2020;24(1):525. Doi:10.1186/s13054-020-03255-0.


36. Schwartz S.S., et al. The time is right for a new classification system for diabetes: rationale and implications of the β-cell-centric classification schema. Diab Care 2016;39:179–86. Doi: 10.2337/dc15-1585.


37. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–47. Doi: 10.1111/jth.14768.


38. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19 – preliminary report. N Engl J Med. 20215;384(8):693–704. Doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17.


Об авторах / Для корреспонденции


Автор для связи: И.Б. Журтова, д.м.н., профессор кафедры факультетской терапии, Кабардино-Балкарский государственный университет 
им. Х.М. Бербекова, Нальчик, Россия; zhin07@mail.ru
Адрес: 360000, Россия, Нальчик, ул. Горького, 5


ORCID:
М.З. Иванова, http://orcid.org/0000-0002-1089-4293
И.Б. Журтова, http://orcid.org/0000-0003-0668-1073
С.Х. Сижажева, http://orcid.org/0000-0002-4412-6700
А.М. Губачикова, http://orcid.org/0000-0002-0017-011X


Бионика Медиа