ХОБЛ – какие факторы развития болезни остаются в тени?


DOI: https://dx.doi.org/10.18565/pharmateca.2018.8.16-23

И.И. Баранова (1, 2), И.В. Лещенко (1, 2)

1) Уральский государственный медицинский университет, Екатеринбург, Россия; 2) Медицинское объединение «Новая больница», Екатеринбург, Россия
В статье, посвященной хронической обструктивной болезни легких (ХОБЛ), рассматриваются альтернативные причины болезни, которые могут вносить определенный вклад в возникновение и развитие ХОБЛ наряду с уже признанными и доказанными факторами риска. Показано возможное влияние нутритивного статуса и метаболизма на формирование фенотипов ХОБЛ, о чем свидетельствуют результаты представленных исследований, хотя проблема недостаточно изучена.
Ключевые слова: хроническая обструктивная болезнь легких, факторы риска, метаболизм, нутритивный статус

Литература


1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop repot Updated 2017. www. goldcopd.com

2. Lopez-Campos J.L., Ruiz-Ramos M., Soriano J.B. Mortality trends in chronic obstructive pulmonary disease in Europe, 1994–2010: a joinpoint regression analysis. Lance. Respir. Med. 2014;2:54–62. DOI: 10.1016/S2213-2600(13)70232-7

3. Murray C.J., Lopez A.D. Measuring the global burden of disease. N. Engl. J. Med. 2013;369:448–57. DOI: 10.1056/NEJMra1201534.

4. Thun M.J., Carter B.D., Feskanich D., et al. 50-year trends in smoking-related mortality in the United States. N. Engl. J. Med. 2013;368:351–64. Doi: 10.1056/NEJMsa1211127.

5. Guarascio A.J., Ray S.M., Finch C.K., Self T.H. The clinical and economiс burden of chronic obstructive pulmonary disease in the USA. Clinicoecon. Outcomes Res. 2013;5:235–45. Doi: 10.2147/CEOR.S34321.

6. Celli B.R., MacNee W., Agusti A., et al.; ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J. 2004;23:932–46.

7. Rostron B.L., Chang C.M., Pechacek T.F. Estimation of cigarette smokingattributable morbidity in the United States. JAMA Intern. Med. 2014;174:1922–28. Doi: 10.1001/jamainternmed.2014.5219.

8. Barnett K., Mercer S.W., Norbury M., et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380:37–43. Doi: 10.1016/S0140-6736(12)60240-2.

9. Roche N., Gaillat J., Garre M., et al. Acute respiratory illness as a trigger for detecting chronic bronchitis in adults at risk of COPD: a primary care survey. Prim. Care Respir. J. 2010;19:371–77.

10. Cote C.G., Casanova C., Mar´ın J.M., et al. Validation and comparison of reference equations for the 6-min walk distance test. Eur. Respir. J. 2008;31:571–78. Doi: 10.1183/09031936.00104507.

11. Oga T., Nishimura K., Tsukino M., et al. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am. J. Respir. Crit. Care Med. 2003;167:544–49.

12. Coxson H.O., Lam S. Quantitative assessment of the airway wall using computed tomography and optical coherence tomography. Proc. Am. Thorac. Soc. 2009;6:439–43. Doi: 10.1513/pats.200904-015AW.

13. Coxson H.O., Leipsic J., Parraga G., Sin D.D. Using pulmonary imaging to move COPD beyond FEV1. Am .J. Respir. Crit. Care Med. 2014;190:135–44. Doi: 10.1164/rccm.201402-0256PP.

14. Vanfleteren L.E., Spruit M.A., Groenen M., et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013;187:728–35. Doi: 10.1164/rccm.201209-1665OC.

15. Burgel P.R., Paillasseur J.L., Peene B., et al. Two distinct chronic obstructive pulmonary disease (COPD) phenotypes are associated with high risk of mortality. PLoS. One. 2012;7:e51048. Doi: 10.1371/journal.pone.0051048.

16. Muscaritoli M., Anker S.D., Argiles J., et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) ‘‘cachexia-anorexia in chronic wasting diseases’’ and ‘‘nutrition in geriatrics’’. Clin. Nutr. 2010;29:154–59. Doi: 10.1016/j.clnu.2009. 12.004.

17. Berrington de Gonzalez A., Hartge P., Cerhan J.R., et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010;363:2211–19. Doi: 10.1056/NEJMoa1000367.

18. Whitlock G., Lewington S., Sherliker P., et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96. Doi: 10.1016/S0140-6736(09)60318-4.

19. Franciosi L.G., Page C.P., Celli B.R., et al. Markers of exacerbation severity in chronic obstructive pulmonary disease. Respir. Res. 2006;7:74. Doi: 10.1186/1465-9921-7-74.

20. Barnes P.J., Chowdhury B., Kharitonov S.A., et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006;174:6–14. Doi: 10.1164/rccm.200510-1659PP.

21. Di Stefano A., Capelli A., Lusuardi M., et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am. J. Respir. Crit. Care Med. 1998;158:1277–85. Doi: 10.1164/ajrccm.158.4.9802078.

22. Gamble E., Grootendorst D.C., Brightling C.E., et al. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003;168:976–82. Doi: 10.1164/rccm.200212-1490OC.

23. Hattotuwa K., Gamble E.A., O’Shaughnessy T., et al. Safety of bronchoscopy, biopsy, and BAL in research patients with COPD. Chest. 2002;122:1909–12.

24. Culpitt S.V., Rogers D.F., Shah P., et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003;167:24–31. Doi: 10.1164/rccm.200204-298OC.

25. Pesci A., Balbi B., Majori M., et al. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 1998;12:380–86. Doi: 10.1183/09031936.98.12020380.

26. Ekberg-Jansson A., Andersson B., Bake B., et al. Neutrophil-associated activation markers in healthy smokers relates to a fall in DL,CO and to emphysematous changes on high resolution CT. Respir. Med. 2001;95:363–73.

27. Tsoumakidou M., Tzanakis N., Siafakas N.M. Induced sputum in the investigation of airway inflammation of COPD. Respir. Med. 2003;97:863–71.

28. Taube C., Holz O., Mucke M., Jorres R.A., Magnussen H. Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am. J. Respir. Crit .Care Med. 2001;164:1810–15. Doi: 10.1164/ajrccm.164.10.2104024.

29. Kelly M.M., Keatings V., Leigh R., et al. Analysis of fluid-phase mediators. Eur. Respir. J. 2002;20(Suppl. 37):24–39. Doi: 10.1183/09031936.02.00002402.

30. Kharitonov S.A., Barnes P.J. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers. 2002;7:1–32. Doi: 10.1080/13547500110104233.

31. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit. Care Med. 2005;171:912–30. Doi: 10.1164/rccm.200406-710ST.

32. Bhowmik A., Seemungal T.A., Donaldson G.C., Wedzicha J.A. Effects of exacerbations and seasonality on exhaled nitric oxide in COPD. Eur. Respir. J. 2005;26:1009–15. Doi: 10.1183/09031936.05.00047305.

33. Paredi P., Kharitonov S.A., Leak D., et al. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000;162:369–73.

34. Montuschi P., Barnes P.J. Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol. Sci. 2002;23:232–37.

35. Gan W.Q., Man S.F., Senthilselvan A., Sin D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59:574–80. Doi: 10.1136/thx.2003.019588.

36. Fanjul-Fernandez M., Folgueras A.R., Cabrera S., et al. Matrixmetalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta. 2010;1803:3–19. Doi: 10.1016/j.bbamcr.2009.07.004.

37. Klein T., Bischoff R. Physiology and pathophysiology of matrixmetalloproteases. Amino Acids. 2011;41:271–90. Doi: 10.1007/s00726-010-0689-x.

38. Rodriguez D., Morrison C.J., Overall C.M. Matrix metalloproteinases:what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta. 2010;1803:39–54.

39. Vanlaere I., Libert C. Matrix metalloproteinases as drug targets ininfections caused by gram-negative bacteria and in septic shock. Clin. Microbiol. Rev. 2009;22:224–39. Doi: 10.1128/CMR.00047-08.

40. Oikonomidi S., Kostikas K., Tsilioni I., et al. Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr. Med. Chem. 2009;16:1214–28.

41. Baraldo S., Bazzan E., Zanin M.E., et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest. 2007;132:1733–40. Doi: 10.1378/chest.06-2819.

42. Lim S., Roche N., Oliver B.G., et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am. J. Respir. Crit. Care Med. 2000;162:1355–60.

43. Churg A., Dai J., Zay K., et al. Alpha-1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab. Invest. 2001;81:1119–31. Doi:10.1038/labinvest.3780324.

44. Wagner P.D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008;31:492–501. Doi: 10.1183/09031936. 00074807.


Об авторах / Для корреспонденции


Автор для связи: И.И. Баранова – к.м.н., ассистент кафедры фтизиатрии и пульмонологии, Уральский государственный медицинский университет, Екатеринбург, Россия; e-mail: baranovailona@gmail.com


Бионика Медиа