Роль генетического риска в оценке кардиоваскулярного прогноза у пациентов с синдромом удлиненного интервала QT


DOI: https://dx.doi.org/10.18565/pharmateca.2024.4.70-76

Искендеров Б.Г., Лохина Т.В., Беренштейн Н.В.

Кафедра терапии, кардиологии, функциональной диагностики и ревматологии, Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, Пенза, Россия
Врожденный синдром удлиненного интервала QT (СУИQT) – наиболее распространенное первичное электрическое заболевание сердца, характеризующееся повышенным риском полиморфной желудочковой тахикардии и внезапной сердечной смерти.
В обзорной статье подробно описаны современная архитектура СУИQT, подходы к стратификации кардиоваскулярного прогноза и анализ маркеров риска, включая роль генетического фактора. В связи с этим представляет интерес внедрение новых высокоинформативных электрокардиографических маркеров риска клинических исходов у пациентов с врожденным СУИQT.

Литература


1. Wilde A.A.M., Amin A.S., Postema P.G. Diagnosis, management, and therapeutic strategies for congenital long QT syndrome. Heart. 2022;108:332–38. Doi: 10.1136/heartjnl-2020-318259.


2. Priori S.G., Marino M. Sudden cardiac death in the young: Are we still missing the opportunity to prevent recurrences in the family? Heart Rhythm. 2021;18(10):1645–46. Doi: 10.1016/j.hrthm.2021.06.1179.


3. Чакова Н.Н., Комиссарова С.М., Ниязова С.С. и др. Множественные мутации в генах, ассоциированных с синдромом LQTS, у пациентов с жизнеугрожающими желудочковыми тахиаритмиями. Медицинская генетика. 2020;19(12):47–55.


4. Pandit M., Finn C., Tahir U., et al. Congenital long QT syndrome: a review of genetic and pathophysiologic etiologies, phenotypic subtypes, and clinical management. Cardiol Rev. 2023;31(6):318–24. Doi: 10.1097/CRD.0000000000000459.


5. Kim J.A., Chelu M.G. Inherited arrhythmia syndromes. Tex Heart Inst J. 2021;48(4):e207482. Doi: 10.14503/THIJ-20-7482.


6. Offerhaus J.A., Bezzina C.R., Wilde A.A.M. Epidemiology of inherited arrhythmias. Nat Rev Cardiol. 2020;17(4):205–15. Doi: 10.1038/s41569-019-0266-2.


7. Giudicessi J.R., Wilde A.A.M., Ackerman M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc Med. 2018;28(7):453–64. Doi: 10.1016/j.tcm.2018.03.003.


8. Li K., Zhang P. Clinical advances in congenital long QT syndrome. Cardiol Discov. 2021;1(3):195–201. Doi: 10.1097/CD9.0000000000000017.


9. Krahn A., Laksman Z., Sy R., et al. Congenital long QT syndrome. JACC Clin Electrophysiol. 2022;8(5):687–706. Doi: 10.1016/j.jacep.2022.02.017.


10. Behr E.R., Scrocco C., Wilde A.A.M., et al. Investigation on sudden unexpected death in the young in Europe: results of the European Heart Rhythm Association Survey. Europace. 2022;24(2):331–39. Doi: 10.1093/europace/euab176.


11. Ingles J., Semsarian C. Time to rethink the genetic architecture of long QT syndrome. Circulation. 2020;141(6):440–43. Doi: 10.1161/CIRCULATIONAHA.119.044760.


12. Adler A., Novelli V., Amin A.S., et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020;141:418–28. Doi: 10.1161/CIRCULATIONAHA.119.043132.


13. Lopez-Medina A.I., Chahal C.A.A., Luzum J.A. The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants. Pharmacogenomics. 2022;23(9):543–57. Doi: 10.2217/pgs-2022-0027.


14. Schwartz P.J. 1970-2020: 50 years of research on the long QT syndrome-from almost zero knowledge to precision medicine. Eur Heart J. 2021;42(11):1063–72. Doi: 10.1093/eurheartj/ehaa769.


15. Biesecker L.G., Harrison S.M. ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med. 2018;20(12):1687–88. Doi: 10.1038/gim.2018.42.


16. Waddell-Smith K.E., Skinner J.R., Bos J.M. Pre-test probability and genes and variants of uncertain significance in familial long QT syndrome. Heart Lung Circ. 2020;29(4):512–19. Doi: 10.1016/j.hlc.2019.12.011.


17. Kutyifa V., Daimee U.A., McNitt S., et al. Clinical aspects of the three major genetic forms of long QT syndrome (LQT1, LQT2, LQT3). Ann Noninvasive Electrocardiol. 2018;23: e12537. Doi: 10.1111/anec.12537.


18. Pйrez-Riera A.R., Barbosa-Barros R., Daminello Raimundo R., et al. The congenital long QT syndrome type 3: An update. Indian Pacing Electrophysiol. J. 2018;18(1):25–35. Doi: 10.1016/j.ipej.2017.10.011.


19. Ahn K.J., Song M.K., Lee S.Y., et al. The outcome of long QT syndrome, a Korean single center study. Korean Circulat. J. 2022;52(10):771–81. Doi: 10.4070/kcj.2022.008.


20. Нестерец А.М., Максимов В.Н. Молекулярно-генетические маркеры длительности интервала QT и внезапная сердечная смерть: обзор литературы. Бюллетень сибирской медицины. 2022;21(1):133–43.


21. Odening K.E., van der Linde H.J., Ackerman M.J., et al. Electromechanical reciprocity and arrhythmogenesis in long-QT syndrome and beyond. Eur Heart J. 2022;43(32):3018–28. Doi: 10.1093/eurheartj/ehac135.


22. Wang M., Peterson D.R., Pagan E., et al. Absolute risk of life-threatening cardiac events in long QT syndrome patients. Front Cardiovasc Med. 2022;9:988951. Doi: 10.3389/fcvm.2022.988951.


23. Mazzanti A., Maragna R., Vacanti G., et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. JACC. 2018;71:1663–71. Doi: 10.1016/j.jacc.2018.01.078.


24. Wang M., Peterson D.R., Rosero S., et al. Effectiveness of implantable cardioverter-defibrillators to reduce mortality in patients with long QT syndrome. JACC. 2021;78(21):2076–88. Doi: 10.1016/j.jacc.2021.09.017.


25. Etheridge S.P., Asaki S.Y., Niu M.C. A personalized approach to long QT syndrome. Curr Opin Cardiol. 2019;34(1):46–56. Doi: 10.1097/HCO.0000000000000587.


26. Rieder M., Kreifels P., Stuplich J., et al. Genotype-specific ECG-based risk stratification approaches in patients with long-QT syndrome. Front Cardiovasc Med. 2022;9:916036. Doi: 10.3389/fcvm.2022.916036.


27. Platonov P.G., McNitt S., Polonsky B., et al. Risk stratification of type 2 long-QT syndrome mutation carriers with normal QTc interval: the value of sex, T-wave morphology, and mutation type. Circ Arrhythm Electrophysiol. 2018;11: e005918. Doi: 10.1161/CIRCEP.117.005918.


28. Crotti L. From gene-specific to function-specific risk stratification in long QT syndrome type 2: implications for clinical management. Europace. 2023;25(4):1320–22. Doi: 10.1093/europace/euad035.


29. Tardo D., Peck M., Subbiah R., et al. The diagnostic role of T wave morphology biomarkers in congenital and acquired long QT syndrome: A systematic review. Ann Noninvasive Electrocardiol. 2023;28:e13015. Doi: 10.1111/anec.13015.


30. Rhee T.M., Ahn H.J., Kim S., et al. Predictive value of electromechanical window for risk of fatal ventricular arrhythmia. J Korean Med Sci. 2023;38(24):e186. Doi: 10.3346/jkms.2023.38.e186.


31. Sugrue A., van Zyl M., Enger N., et al. Echocardiography-guided risk stratification for long QT syndrome. JACC. 2020;76:2834–43. Doi: 10.1016/j.jacc.2020.10.024.


32. Marcinkeviciene A., Rinkuniene D., Puodziukynas A. Long QT syndrome management during and after pregnancy. Medicina (Kaunas). 2022;58(11):1694. Doi: 10.3390/medicina58111694.


33. Goldenberg I., Bos J.M., Yoruk A., et al. Risk prediction in women with congenital long QT syndrome. JAHA. 2021;10(14):e021088. Doi: 10.1161/JAHA.121.021088.


34. Turkowski K.L., Dotzler S.M., Tester D.J., et al. Corrected QT interval–polygenic risk score and its contribution to type 1, type 2, and type 3 long-QT syndrome in probands and genotype-positive family members. Circ Genom Precis Med. 2020;13:e002922. Doi: 10.1161/CIRCGEN.120.002922.


35. Rudy Y. Noninvasive mapping of repolarization with electrocardiographic imaging. JAHA. 2021;10:e021396. Doi: 10.1161/JAHA.121.021396.


36. Han L., Liu F., Li Q., et al. The efficacy of beta-blockers in patients with long QT syndrome 1–3 according to individuals’ gender, age, and QTc intervals: a network meta-analysis. Front Pharmacol. 2020;11:579525. Doi: 10.3389/fphar.2020.579525.


37. Ziupa D., Menza M., Koppermann S., al. Electro-mechanical dysfunction in long QT syndrome type 1. Int J Cardiol. 2019;274:144–51. Doi: 10.1016/j.ijcard.2018.07.050.


38. Charisopoulou D., Koulaouzidis G., Law L.F., et al. Exercise induced worsening of mechanical heterogeneity and diastolic impairment in long QT syndrome. J Clin Med. 2020;10:37–48. Doi: 10.3390/jcm10010037.


39. Timothy A., Davies B., Laksman Z., et al. Provocation testing in congenital long QT syndrome: a practical guide. Heart Rhythm. 2023;20(11):1570–82. Doi: 10.1016/j.hrthm.2023.07.059.


40. Chan C-H, Hu Y-F, Chen P-F, et al. Exercise test for patients with long QT syndrome. Acta Cardiol Sin. 2022;38:124–33. Doi: 10.6515/ACS.202203_38(2).20211101A.


41. Wallace E., Howard L., Liu M., et al. Long QT syndrome: genetics and future perspective. Pediatr Cardiol. 2019;40:1419–30. Doi: 10.1007/s00246-019-02151-x.


42. Cortez D., Zareba W., McNitt S., et al. Quantitative T‐wave morphology assessment from surface ECG is linked with cardiac events risk in genotype‐positive KCNH2 mutation carriers with normal QTc values. J Cardiovasc Electrophysiol. 2019; 30(12):2907–13. Doi: 10.1111/jce.14210.


Об авторах / Для корреспонденции


Автор для связи: Бахрам Гусейнович Искендеров, д.м.н., профессор, зав. кафедрой терапии, кардиологии, функциональной диагностики 
и ревматологии, Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, Пенза, Россия; iskenderovbg@mail.ru


ORCID / eLibrary SPIN:
Б.Г. Искендеров (B.G. Iskenderov), ORCID: https://orcid.org/0000-0003-3786-7559; eLibrary SPIN: 6466–9013
Т.В. Лохина (T.V. Lokhina), ORCID: https://orcid.org/0000-0002-9493-444X 
Н.В. Беренштейн (N.V. Berenstein), ORCID: https://orcid.org/0000-0002-1589-2799


Похожие статьи


Бионика Медиа