Лечение новой коронавирусной инфекции (COVID-19): возможности и ограничения


DOI: https://dx.doi.org/10.18565/pharmateca.2020.10.52-60

О.В. Фесенко (1), О.А. Сибирякова (1), С.Н. Швайко (2)

1) Российская медицинская академия непрерывного профессионального образования, Москва, Россия, Москва, Россия; 2) ГКБ им. С.П. Боткина, Москва, Россия
Продолжающийся рост заболеваемости делает одной из актуальных проблем современной медицины рациональную терапию новой коронавирусной инфекции COVID-19. На основании анализа современных федеральных рекомендаций рассматриваются принципы этиотропного и патогенетического лечения COVID-19. В статье представлен аналитический обзор препаратов, рекомендованных в последней (восьмой) версии временных методических рекомендаций Министерства здравоохранения Российской Федерации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)», от 03.09.2020 и других источниках.
Ключевые слова: COVID-19, коронавирусная инфекция, этиотропная терапия, патогенетическая терапия

Литература


1. Министерство здравоохранения Российской Федерации. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)», версия 8 (03.03.20).


2. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceed Japan Acad Series B. 2017;7(93):449–63. Doi: 10.2183/pjab.93.027/


3. Государственный реестр лекарственных средств.


4. URL: https://www.cdc.gov.tw/File/Get/ht8jUiB_MIaKnlwstwzvw (date of access: 04.06.2020).


5. China approves first anti-viral drug against coronavirus Covid-19


6. Yu Xuan. Initial clinical results announced for favipiravir treatment of novel coronavirus pneumonia – viral clearance in four days. Biodiscover. 2020.


7. Chen C., Huang J., Cheng Z., et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv. 2020. 10.1101/2020.03.17.20037432.


8. Cai Q., Yang M., Liu D., et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020. Doi: 10.1016/j.eng.2020.03.007.


9. https://www.reuters.com/article/us-health-coronavirus-fujifilm-idUSKCN24T0YM.


10. Ben-Zvi I., Kivity S., Langevitz P., Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42(2):145–53. Doi: 10.1007/s12016-010-8243-x.


11. Li C., Zu S., Deng Y.Q., et al. Azithromycin Protects against Zika virus Infection by Upregulating virus-induced Type I and III Interferon Responses. Antimicrob Agents Chemother. 2019.


12. Kouznetsova J., Sun W., Martinez-Romero C., et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg Microbes Infect. 2014;3(12):e84. Doi: 10.1038/emi.2014.88.


13. Gielen V., Johnston S.L., Edwards M.R. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646–54. Doi: 10.1183/09031936.00095809.


14. Tyteca D., Van Der Smissen P., Mettlen M., et al. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp Cell Res. 2002;281(1):86–100. Doi: 10.1006/excr.2002.5613.


15. Menzel M., Akbarshahi H., Bjermer L., Uller L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci Rep. 2016;6:28698. Doi: 10.1038/srep28698.


16. Takizawa H., Desaki M., Ohtoshi T., et al. Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells: a potential mechanism of its antiinflammatory action. Biochem Biophys Res Commun. 1995;210(3):781–86. Doi: 10.1006/bbrc.1995.1727.


17. Schultz M.J. Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother. 2004;54(1):21–8. Doi: 10.1093/jac/dkh309.


18. Keyaerts E., Vijgen L., Maes P., et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264–68. Doi: 10.1016/j.bbrc.2004.08.085/


19. Dyall J., Coleman C.M., Hart B.J., et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885–93. Doi: 10.1128/AAC.03036-14.


20. Wang M., Cao R., Zhang L., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71. Doi: 10.1038/s41422-020-0282-0.


21. Yao X., Ye F., Zhang M., et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020;71(15):732–39. Doi: 10.1093/cid/ciaa237.


22. Vincent M.J., Bergeron E., Benjannet S., et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. Doi: 10.1186/1743-422X-2-69.


23. Yu B., Li C., Chen P., et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci. 2020;1–7. Doi: 10.1007/s11427-020-1732-2.


24. Arshad S., Kilgore P., Chaudhry Z.S., et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396–403. Doi: 10.1016/j.ijid.2020.06.099.


25. Geleris J., Sun Y., Platt J., et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;382(25):2411–18. Doi: 10.1056/NEJMoa2012410.


26. Magagnoli J., Narendran S., Pereira F., et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med. 2020;2020.04.16.20065920. Doi: 10.1101/2020.04.16.20065920.


27. Mahevas M., Tran V.-T., Roumier M., et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. medRxiv. 2020.


28. Rosenberg E.S., Dufort E.M., Udo T., et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. Jama. 2020;323(24):2493–502. Doi: 10.1001/jama.2020.8630.


29. Ip A., Berry D.A., Hansen E., et al. Hydroxychloroquine and Tocilizumab Therapy in COVID19 Patients-An Observational Study. medRxiv. 2020.


30. Horby P., Mafham M., Linsell L., et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. medRxiv. 2020.


31. Cavalcanti A.B., Zampieri F.G., Rosa R.G., et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med. 2020;NEJMoa2019014. Doi: 10.1056/NEJMoa2019014.


32. Chen J., Liu D., Liu L., et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. J. Zhejiang Univer. (Med Sci.) 2020;49(2):215–19. Doi: 10.3785/j.issn.1008-9292.2020.03.03.


33. Chen Z., Hu J., Zhang Z., et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. 2020.


34. Tang W., Cao Z., Han M., et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. Br Med J. 2020;369:m1849. Doi: 10.1136/bmj.m1849.


35. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novelcoronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments.


36. https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-usehydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or.


37. https://www.tropmedres.ac/covid-19/copcov/copcov-key-messages


38. Boulware D. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N. Engl. J. Med. 2020;383:517–25. Doi: 10.1056/NEJMoa2016638.


39. Gautret P., Lagier J.C., Parola P., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob. Agents. 2020;56(1):105949. Doi: 10.1016/j.ijantimicag.2020.105949.


40. www.idsociety.org/COVID19guidelines.


41. Страчунский Л.С., Козлов С.Н. Современная антимикробная химиотерапия. Руководство для врачей. М., 2002. 432 с.


42. Agostini M.L., Andres E.L., Sims A.C., et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9(2):e00221–18. Doi: 10.1128/mBio.00221-18.


43. Manli Wang. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;4:1–3.


44. Beigel J.H., Tomashek K.M., Dodd L.E., et al. Remdesivir for the Treatment of Covid-19 – Preliminary Report. N Engl J Med. 2020. ISSN 0028-4793. Doi: 10.1056/NEJMoa2007764.


45. FDA Allows For ‘Emergency Use’ of Remdesivir, Experimental Coronavirus Drug (англ.). TIME. ASSOCIATED PRESS (1 May 2020).


46. Herman, Steve. Coronavirus Treatment Breakthrough Announced, Voice of America (29 April 2020). URL: https://www.voanews.com/covid19-pandemic/coronavirus-treatment-breakthrough-announced.


47. Blaising J., Polyak S.J., Pécheur E.I. Arbidol as a broad‐spectrum antiviral: an update. Antiviral Res. 2014;107:84–94. Doi: 10.1016/j.antiviral.2014.04.006.


48. https://grls.rosminzdrav.ru/ , ЛСР-003900_07.


49. Fink S.L., Vojtech L., Wagoner J., et al. The Antiviral Drug Arbidol Inhibits Zika Virus. Sci Rep. 2018;8(1):8989. Doi: 10.1038/s41598-018-27224-4.


50. Huang D., Yu H., Wang T., et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis


51. Casadevall A., Scharff M.D. Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis. 1995;21(1):150–61. Doi: 10.1093/clinids/21.1.150.


52. Casadevall A., Dadachova E., Pirofski L.A. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2004;2(9):695–703. Doi: 10.1038/nrmicro974.


53. Sahr F., Ansumana R., Massaquoi T.A., et al. Evaluation of convalescent whole blood for treating Ebola Virus Disease in Freetown, Sierra Leone. J Infect. 2017;74(3):302–9. Doi: 10.1016/j.jinf.2016.11.009.


54. Cheng Y., Wong R., Soo Y.O., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect. Dis. 2005;24(1):44–6. Doi: 10.1007/s10096-004-1271-9.


55. Ko J.H., Seok H., Cho S.Y., et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther. 2018;23(7):617–22. Doi: 10.3851/IMP3243.


56. Stockman L.J., Bellamy R., Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. Doi: 10.1371/journal.pmed.0030343.


57. Arabi Y.M, Mandourah Y., Hameed F., et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018;197(6):757–67. Doi: 10.1164/rccm.201706-1172OC.


58. Oxford University News Release: Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. 2020.


59. Horby P., et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv. Cold Spring Harbor Laboratory Press, 2020. P. 2020.06.22.20137273.


60. Judith A., et al. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines (NIH). NIH. 2020;2019:124.


61. Ana Fernández-Cruz, Belén Ruiz-Antorán, Ana Muñoz-Gómez, et al. Impact of glucocorticoid treatment in SARS-COV-2 infection mortality: a retrospective controlled cohort study. medRxiv. Am Soc Microbiol J. 2020. P. 2020.05.22.20110544. Doi: 10.1128/AAC.01168-20.


62. Wu C., Chen X., Cai Y., et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. American Medical Association. 2020;180(7):934–43. Doi: 10.1001/jamainternmed.2020.0994.


63. Xu X., Han M., Li T., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117:10970–75. Doi: 10.1073/pnas.2005615117.


64. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARSCoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet. Respir Med. 2020;8(5):475–81. Doi: 10.1016/S2213-2600(20)30079-5.


65. Luo P., Liu Y., Qiu L., et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92:814–18. Doi: 10.1002/jmv.25801.


66. https://pharmvestnik.ru/content/news/Preparat-Kevzara-ot-Sanofi-ne-proshel-klinicheskie-issledovaniya-dlya-lecheniya-COVID-19.html.


67. Государственный реестр лекарственных средств. Канакинумаб (Иларис). Инструкция по медицинскому применению. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=7e4e1e19-96b4-406e-9362- ecbb28cb32c3&t.


68. Siebert S., Tsoukas A., Robertson J., McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67(2):280–309. Doi: 10.1124/pr.114.009639.


69. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;15:448–57. Doi: 10.1038/ni.3153.


70. Liu X., Jones G.W., Choy E.H., Jones S.A. The biology behind interleukin-6 targeted interventions. Curr Opin Rheumatol. 2016;28:152–60. Doi: 10.1097/BOR.0000000000000255.


71. Cantini F., Niccoli L., Matarrese D., et al. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Infect. 2020;81(2):318–56. Doi: 10.1016/j.jinf.2020.04.017.


72. Mehta P., McAuley D.F., Brown M., et.al. Emilie Sanchez COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–34. Doi: 10.1016/S0140-6736(20)30628-0.


73. McGonagle D., Sharif K., O’Regan A., et al. The role of cytokines including interleukin-6 in COVID-19 induced pnumoneia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;3:102537. Doi: 10.1016/j.autrev.2020.102537.


74. Colombi D., Bodini F.C., Petrini M., et al. Well-aerated lung on admitting chest ct to predict adverse outcome in COVID-19 pneumonia. Radiol. 2020;296(2):E86–E96. Doi: 10.1148/radiol.2020201433.


75. Bhimraj A., Morgan R.L., Shumaker A.H., et al. Infectious diseases society of America Guidelines on the treatment and management of patients with COVID-19. 2020;ciaa478. Doi: 10.1093/cid/ciaa478.


76. Liang H., Danwada R., Guo D., et al. Incidence of inpatient venous thromboembolism in treated patients with rheumatoid arthritis and the association with switching biologic or targeted synthetic diseasemodifying antirheumatic drugs(DMARDs) in the real-world setting. RMD Open. 2019;2(5):e001013. Doi: 10.1136/rmdopen-2019-001013.


77. Sandborn W.J., Panés J., Sands B.E., et al. Venous thromboembolic events in the tofacitinib ulcerative colitis clinical development programme. Aliment. Pharmacol. Ther. 2019;50(10):1068–76. Doi: 10.1111/apt.15514.


Об авторах / Для корреспонденции


Автор для связи: О.В. Фесенко, д.м.н., профессор кафедры пульмонологии, Российская медицинская академия непрерывного профессионального образования, Москва, Россия, Москва, Россия; е-mail: ofessenko@mail.ru
Адрес: 125993, Россия, Москва, ул. Баррикадная, 2/1, стр.1


Бионика Медиа