COVID-19: отдельные клинические аспекты через призму практического опыта


DOI: https://dx.doi.org/10.18565/pharmateca.2020.10.38-51

Ю.Г. Белоцерковская (1), С.С. Лебедев (1), Д.В. Вакатов (2), И.А. Демина (2), О.Н. Сакара (2), А.Г. Романовских (1), И.П. Смирнов (1)

1) Российская медицинская академия непрерывного профессионального образования, Москва, Россия; 2) Городская клиническая больница им. С.П. Боткина, Москва, Россия
С момента первого сообщения в декабре 2019 г. о новой коронавирусной инфекции, получившей название COVID-19, новый штамм коронавирусов человека SARS-CoV-2 распространился по всему миру, достигнув масштабов пандемии. Многое еще предстоит изучить, и задачи ближайшего будущего состоят в том, чтобы дополнить наше понимание эпидемиологии, патофизиологии, особенностей клинического течения этого нового инфекционного заболевания. Остается много вопросов, касающихся взаимодействия вируса и организма человека. До сих пор не доказана эффективность ни одного из противовирусных препаратов. В настоящей статье освещены некоторые аспекты патогенеза и клинического течения COVID-19, а также связанные с ними возможности оптимизации терапии. Многогранная, порой избыточная и неконтролируемая реакция со стороны иммунной системы определяет чрезвычайно изменчивый спектр клинических проявлений COVID-19, который колеблется от бессимптомного течения до смертельной двусторонней пневмонии и полиорганной недостаточности. «Цитокиновый шторм» представляется одним из наиболее серьезных и потенциально опасных для жизни событий, ассоциируемых с наиболее тяжелым клиническим течением COVID-19, в т.ч. с развитием острого респираторного дистресс-синдрома. Противовоспалительная терапия, включая антитела к рецептору интерлейкина-6, а также своевременная и адекватная респираторная поддержка без сомнения доказали свою эффективность в лечении этих тяжелых пациентов. Хронические респираторные заболевания (бронхиальная астма [БА] и хроническая обструктивная болезнь легких [ХОБЛ]) могут драматически влиять на судьбу пациента, инфицированного SARS-CoV2. Вот почему строго рекомендуются профилактические меры для предотвращения инфицирования и продолжение базисной терапии БА и ХОБЛ, включая ингаляционные глюкокортикостероиды, для снижения риска обострения хронического заболевания, с одной стороны, и улучшения исходов COVID-19, с другой.
Ключевые слова: острые респираторные инфекции, COVID-19, SARS-CoV-2, клинические особенности COVID-19, фармакотерапия COVID-19, ОРДС, цитокиновый шторм, бронхиальная астма, хроническая обструктивная болезнь легких

Литература


1. Liu J., Dai S., Wang M., et al. Virus like particle-based vaccines against emerging infectious disease viruses. J Virol Sin. 2016;31:279–87. Doi: 10.1007/s12250-016-3756-y.


2. Qu G., Li X., Hu L., Jiang G. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environ Sci Technol. 2020;54:3730–32. Doi: 10.1021/acs.est.0c01102.


3. De Groot R.J., Baker S.C., Baric R.S., et al. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790–2. Doi: 10.1128/JVI.01244-13.


4. Weber D.J., Rutala W.A., Fischer W.A., et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A (H5N1) and A (H7N9) Am J Infect Control. 2016;44:e91–100. Doi: 10.1016/j.ajic.2015.11.018.


5. Lai C.C., Shih T.P., Ko W.C., et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020:105924. Doi: 10.1016/j.ijantimicag.2020.105924.


6. Lam T.T.-Y., Shum M.H.-H., Zhu H.-C., et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv 2020:2020.2002.2013.945485.


7. Li X., Zai J., Zhao Q., et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020;92(6):602–11. Doi: 10.1002/jmv.25731.


8. Du Z., Xu X., Wu Y., et al. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020;26(6):1341–43. Doi: 10.3201/eid2606.200357.


9. Lu C., Liu X., Jia Z. 2019-nCoV transmission through the ocular surface mustnot be ignored. Lancet (London, England). 2020;395(10224):e39. Doi: 10.1016/S0140-6736(20)30313-5.


10. Guan W., Ni Z., Hu Y., et al. clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. Doi: 10.1056/NEJMoa2002032.


11. Nishiura H., Linton N.M., Akhmetzhanov A.R. Initial Cluster of Novel Coronavirus (2019-nCoV) Infections in Wuhan, China Is Consistent with Substantial Human-to-Human Transmission. J Clin Med. 2020;9(2):488. Doi: 10.3390/jcm9020488.


12. Sun S.H., Chen Q., Gu H.J., et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124–33.e4. Doi: 10.1016/j.chom.2020.05.020.


13. Liu J., Zheng X., Tong Q., et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491–94. Doi: 10.1002/jmv.25709.


14. Yang Y., Xiao Z., Ye K., et al. SARS-CoV-2: characteristics and current advances in research. J Virol. 2020;17(1):117. Doi: 10.1186/s12985-020-01369-z.


15. Hellewell J., Abbott S., Gimma A., et al. Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Funk S., Eggo R.M. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8(4):e488–96. Doi: 10.1016/S2214-109X(20)30074-7.


16. Chen T., Rui J., Wang Q., et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Inf Dis Poverty. 2020;9(1):24. Doi: 10.1186/s40249-020-00640-3.


17. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. Doi: 10.1016/S0140-6736(20)30183-5.


18. Munster V.J., Koopmans M., van Doremalen N., van Riel D., de Wit E. A novel coronavirus emerging in China – key questions for impact assessment. N Engl J Med. 2020;382:692–94. Doi: 10.1056/NEJMp2000929.


19. Lu R., Zhao X., Li J., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. Doi: 10.1016/S0140-6736(20)30251-8.


20. Li H., Liu L., Zhang D., et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395:1517–20. Doi: 10.1016/S0140-6736(20)30920-X.


21. Guo Y.-R., Cao Q.-D., Hong Z.-S., et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7:11. Doi: 10.1186/s40779-020-00240-0.


22. Teuwen L.A., Geldhof V., Pasut A., et al. Author Correction: COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;1. Doi: 10.1038/s41577-020-0356-8.


23. Профилактика, диагностика и лечение новой коронавирусной инфекции (2019-nCoV). Временные методические рекомендации. Версия 8 (03.09.2020). Министерство здравоохранения Российской Федерации.


24. Langer F., Kluge S., Klamroth R., et al. Coagulopathy in COVID-19 and Its Implication for Safe and Efficacious Thromboprophylaxis. Hamostaseol. 2020;40(3):264–9. Published on-line 2020 Jun 4. Doi: 10.1055/a-1178-3551.


25. Zaim S., Chong J.H., Sankaranarayanan V., Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020;45(8):100618. Doi: 10.1016/j.cpcardiol.2020.100618.


26. Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–18. Doi: 10.1016/S0140-6736(20)30937-5.


27. Yang Y., Xiao Z., Ye K., et al. SARS-CoV-2: characteristics and current advances in research. J Virol. 2020;17:117. Doi: 10.1186/s12985-020-01369-z.


28. Sharma A., Tiwari S., Deb M.K., Martyc J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents. 2020;56(2):106054. Published on-line 2020 Jun 10. Doi: 10.1016/j.ijantimicag.2020.106054.


29. Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. Doi: 10.1128/MMBR.05015-11.


30. Ferrara J.L., Abhyankar S., Gilliland D.G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant. Proc. 1993;25(1 Pt. 2):1216–7.


31. Yuen K.Y., Wong S.S. Human infection by avian influenza A H5N1. Hong Kong Med J. 2005;11(3):189–99.


32. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–39. Doi: 10.1007/s00281-017-0629-x.


33. Wang D., Hu B., Hu C., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. doi: 10.1001/jama.2020.1585.


34. Coperchini F., Chiovato L., Croce L., et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. Doi: 10.1016/j.cytogfr.2020.05.003.


35. Brocker C., Thompson D., Matsumoto A., et al. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics. 2010;5(1):30–55. Doi: 10.1186/1479-7364-5-1-30.


36. Kimura A., Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–35. Doi: 10.1002/eji.201040391.


37. Scheller J., Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med. Microbiol Immunol. 2006;195(4):173–83. Doi: 10.1007/s00430-006-0019-9.


38. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57. Doi: 10.1038/ni.3153.


39. Chen L., Liu H.G., Liu W., et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(0):E005. Doi: 10.3760/cma.j.issn.1001-0939.2020.0005.


40. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. Doi: 10.1016/j.autrev.2020.102537.


41. Henry B.M., de Oliveira M.H.S., Benoit S., Plebani M.,Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021. Doi: 10.1515/cclm-2020-0369.


42. Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020;50(4):382–83. Doi: 10.1016/j.medmal.2020.04.002.


43. DeDiego M.L., Nieto-Torres J.L., Regla-Nava J.A., et al. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913–24. Doi: 10.1128/JVI.02576-13.


44. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55 (5):105954. Doi: 10.1016/j.ijantimicag.2020.105954.


45. Klopfenstein T., Zayet S., Lohse A., et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Mal. Infect. 2020;50(5):397–400. Doi: 10.1016/j.medmal.2020.05.001.


46. Xu X., Han M., Li T., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–75. Doi: 10.1073/pnas.2005615117.


47. Luo P., Liu Y., Qiu L., et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92:814–18. Doi: 10.1002/jmv.25801. Doi: 10.1002/jmv.26156.


48. Toniati P., Piva S., Cattalini M., et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568. Doi: 10.1016/j.autrev.2020.102568.


49. Chen G., Wu D., Guo W., et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–29. Doi: 10.1172/JCI137244.


50. Onder G., Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775–76. Doi: 10.1001/jama.2020.4683.


51. Ranieri V.M., Rubenfeld G.D., et al. ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. Doi: 10.1001/jama.2012.5669.


52. World Health Organization. Coronavirus disease (COVID-19) Pandemic www.who.int/emergencies/diseases/novel-coronavirus-2019.


53. Herold S., Becker C., Ridge K.M., et al. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J. 2015;45:1463–78. Doi: 10.1183/09031936.00186214.


54. Wang J., Nikrad M.P., Travanty E.A., et al. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012;7:e29879. Doi: 10.1371/journal.pone.0029879.


55. Camp J.V., Jonsson C.B. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol. 2017;8:550. Doi: 10.3389/fimmu.2017.00550.


56. Carlin L.E., Hemann E.A., Zacharias Z.R., et al. Natural Killer Cell Recruitment to the Lung During Influenza A Virus Infection Is Dependent on CXCR3, CCR5, and Virus Exposure Dose. Front. Immunol. 2018;9:781. Doi: 10.3389/fimmu.2018.00781.


57. Xu Li, Xiaochun Ma. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit. Care. 2020;24:198. Published on-line 2020 May 6. Doi: 10.1186/s13054-020-02911-9.


58. Chung M., Bernheim A., Mei X.Y., et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiol. 2020;295(1):202–7. Doi: 10.1148/radiol.2020200230.


59. Manuel A. Acosta T., Singer B.D. Pathogenesis of COVID-19-induced ARDS: implications for an aging population. Eur Respir J. 2020;2002049. Doi: 10.1183/13993003.02049-2020.


60. Rishik Vashisht, Abhijit Duggal. Respiratory failure in patients infected with SARS-CoV-2. Clev. Clin J Med. 2020. Doi: https://doi.org/10.3949/ccjm.87a.ccc025.


61. Alhazzani W., Møller M.H., Arabi Y.M., et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440–69. Doi: 10.1097/CCM.0000000000004363.


62. Brower R.G., Matthay M.A., Morris A., et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–308. Doi: 10.1056/NEJM200005043421801.


63. Corne J.M., Marshall C., Smith S., et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet. 2002;359(9309):831–34.


64. Jackson D.J., Trujillo-Torralbo M.B., del-Rosario J., et al. The influence of asthma control on the severity of virus-induced asthma exacerbations. J Allergy Clin Immunol. 2015;136(2):497–500 e3. Doi: org/10.1016/j.jaci.2015.01.028.


65. Sykes A., Edwards M.R., Macintyre J., et al. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin Immunol. 2012;129(6):1506–14. e6. Doi: 10.1016/j.jaci.2012.03.044.


66. Wark P.A., Johnston S.L., Bucchieri F., et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005;201(6):937–47. Doi: 10.1084/jem.20041901.


67. Contoli M., Message S.D., Laza-Stanca V., et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006;12(9):1023–26. Doi: 10.1038/nm1462.


68. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. Doi: 10.1016/S0140-6736(20)30211-7.


69. Li X., Xu S., Yu M., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol.


70. Bhatraju P.K., Ghassemieh B.J., Nichols M., et al. Covid-19 in critically ill patients in the Seattle region-case series. N Engl J Med. 2020;382:2012–22. Doi: 10.1056/NEJMoa2004500.


71. Garg S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 – COVID-NET, 14 states, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458–64. Doi: 10.15585/mmwr.mm6915e3.


72. Myers L.C., Parodi S.M., Escobar G.J., Liu V.X. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. JAMA. 2020;323:2195–98. Doi: 10.1001/jama.2020.7202.


73. Chhiba K.D., Patel G.B., Vu T.H.T., et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J. Allergy Clin. Immunol. 2020;146(2):307–14.e4. Doi: 10.1016/j.jaci.2020.06.010.


74. Cummings M.J., Baldwin M.R., Abrams D., et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70. Doi: 10.1016/S0140-6736(20)31189-2.


75. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2020. www.ginasthma.org.


76. Yang M., Zhang Y., Chen H., et al. Inhaled corticosteroids and risk of upper respiratory tract infection in patients with asthma: a meta-analysis. Infection. 2019;47:377–85. Doi: 10.1007/s15010-018-1229-y.


77. Yang M., Chen H., Zhang Y., et al. Long-term use of inhaled corticosteroids and risk of upper respiratory tract infection in chronic obstructive pulmonary disease: a meta-analysis. Inhal Toxicol 2017;29:219–26. Doi: 10.1001/archinternmed.2008.550.


78. Yang I.A., Clarke M.S., Sim E.H., et al. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;7:CD002991. Doi: 10.1002/14651858.CD002991.pub3.


79. Contoli M., Pauletti A., Rossi M.R., et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J. 2017;50:1700451. Doi: 10.1183/13993003.00451-2017.


80. Yamaya M., Nishimura H., Deng X., et al. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells. Respir Investig. 2020; in press


81. Matsuyama S., Kawase M., Nao N., et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv 2020; preprint


82. Jeon S., Ko M., Lee J., et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. bioRxiv 2020; preprint


83. Jackson D.J., Busse W.W., Bacharier L.B., et al. Association of respiratory allergy, asthma and expression of the SARS-CoV-2 receptor, ACE2. J Allergy Clin. Immunol. 2020;146:203–6. Doi:10.1016/j.jaci.2020.04.009.


84. Peters M.C., Sajuthi S., Deford P., et al. COVID-19 related genes in sputum cells in asthma: Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83–90. Doi: 10.1164/rccm.202003-0821OC.


85. COVID-19: GINA Answers to frequently asked questions on asthma management March 25, 2020. https://ginasthma.org/covid-19-gina-answers-to-frequently-asked-questions-on-asthma-management.


86. Restrepo M.I., Mortensen E.M., Pugh J.A., Anzueto A. COPD is associated with increased mortality in patients with community-acquired pneumonia. Eur Respir J. 2006;28:346–51. Doi: 10.1183/09031936.06.00131905.


87. Restrepo M.I., Sibila O., Anzueto A. Pneumonia in patients with chronic obstructive pulmonary disease. Tuberc Respir Dis. 2018;81:187–97. Doi: 10.4046/trd.2018.0030.


88. Kew K.M., Seniukovich A. Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2014;(3):CD010115. Doi: 10.1002/14651858.CD010115.pub2.


89. Satia I., Cusack R., Greene J.M., et al. Prevalence and contribution of respiratory viruses in the community to rates of emergency department visits and hospitalizations with respiratory tract infections, chronic obstructive pulmonary disease and asthma. PLoS One. 2020;15(2):e0228544. Published on-line 2020 Feb 6. Doi: 10.1371/journal.pone.0228544.


90. Liu W., Tao Z.-W., Lei W., et al. Analysis of factors associated with disease outcomes in hospitalized patnts with 2019 novel coronavirus disease. Chin Med J. 2020;133(9):1032–38. Doi: 10.1097/CM9.0000000000000775.


91. Wan Y., Shang J., Graham R., et al. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS.


92. Toru U., Ayada C., Genç O., et al. Serum levels of RAAS components in COPD


93. Zhou Y., Yang Q., Chi J., et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020 July 25. Doi: https://doi.org/10.1016/j.ijid.2020.07.029


94. Lippi G., Henry B.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. Doi: https://doi.org/10.1016/j.rmed.2020.105941


95. World Health Organization. Tobacco Users May Be at an Increased Risk of #COVID19, both in Contracting the Disease and Complications. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/technical-guidance/resources-for-tobacco-use-control-as-part-of-covid-19-response/infographic-coronavirus-covid-19-and-tobacco-use. Date last accessed: 10 May 2020


96. Killerby M.E., Link-Gelles R., Haight S.C., et al. Characteristics associated with hospitalization among patients with COVID-19 – Metropolitan Atlanta, Georgia, March–April 2020. MMWR Morb Mortal Wkly Rep. 2020;69:790–94. Doi: 10.15585/mmwr.mm6925e1.


97. Karanasos A., Aznaouridis K., Latsios G., et al. Impact of smoking status on disease severity and mortality of hospitalized patients with COVID-19 infection: a systematic review and meta-analysis. Nicotine Tob Res. 2020;22(9):1657–59. Doi: org/10.1093/ntr/ntaa107.


98. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2020. https://goldcopd.org/gold-covid-19-guidance


Об авторах / Для корреспонденции


Автор для связи: Ю.Г. Белоцерковская, к.м.н., доцент кафедры пульмонологии, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; e-mail: belo-yuliya@yandex.ru; ORCID: https://orcid.org/0000-0003-1224-1904 
Адрес: 125993, Россия, Москва, ул. Баррикадная, 2/1, стр. 1


Бионика Медиа