Лекарственные средства, прием которых ассоциирован с развитием остеопороза


DOI: https://dx.doi.org/10.18565/pharmateca.2020.4.108-118

О.Д. Остроумова (1, 2), И.В. Голобородова (3)

1) Российская медицинская академия непрерывного профессионального образования, Москва, Россия; 2) Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет), Москва, Россия; 3) Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Москва, Россия
Остеопороз представляет собой одну из наиболее актуальных, сложных и нерешенных эпидемиологических, медико-социальных и экономических проблем, стоящих перед медицинской общественностью и мировой системой здравоохранения в целом. Вторичный лекарственно-индуцированный остеопороз как один из наиболее важных аспектов проблемы также требует пристального рассмотрения. Известно, что вторичный остеопороз сопровождается более интенсивным уменьшением костной ткани, увеличивая риск развития неблагоприятных исходов (снижение качества жизни, инвалидизация, смерть). Лекарственные средства, прием которых ассоциирован с развитием вторичного остеопороза, назначаются врачами различных специальностей для терапии разнообразных патологических состояний. Они представлены гормональными (системные глюкокортикостероиды, ингибиторы ароматазы, депо-медроксипрогестерон, агонисты гонадотропин-релизинг гормона, препараты гормонов щитовидной железы – левотироксин), сердечно-сосудистыми (антикоагулянты, петлевые диуретики), психотропными (противоэпилептические препараты, антидепрессанты) средствами, иммуномодуляторами (ингибиторы кальциневрина, препараты антиретровирусной терапии), а также препаратами, используемыми в гастроэнтерологической (ингибиторы протонной помпы, блокаторы Н2-гистаминовых рецепторов), эндокринологической (тиазолидиндионы) и онкологической практике. В данной статье обобщены и систематизированы имеющиеся в литературе данные, касающиеся влияния лекарственных средств на развитие остеопороза, с целью повышения информированности врачей различных специальностей, использующих препараты – индукторы остеопороза в рутинной клинической практике, о проблеме лекарственно-индуцированного остеопороза.
Ключевые слова: остеопороз, лекарственно-индуцированный остеопороз, потеря костной массы, остеопоретический перелом, системные глюкокортикостероиды, ингибиторы ароматазы, антидепрессанты, противоэпилептические препараты, ингибиторы протонной помпы, тиазолидиндионы, иммуномодуляторы, антикоагулянты, петлевые диуретики, нежелательные лекарственные реакции

Литература


1. Kanis J.A. Оn behalf of the World Health Organization Scientific Group (2007). Assessment of osteoporosis at the primary healthcare level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK. 2007: Printed by University of Sheffield.


2. Российская ассоциация эндокринологов при участии: Российская ассоциация остеопороза, Российская ассоциация ревматологов, Ассоциация травматологов-ортопедов России, Российская ассоциация по менопаузе, Ассоциация гинекологов-эндокринологов. Остеопороз. Клинические рекомендации. М., 2016.


3. Здоровье скелета: проблемы и пути решения. Глобальный план изменения ситуации.


4. Hernlund E., Svedbom A., Ivergård M., et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136. Doi: 10.1007/s11657-013-0136-1.


5. Borgelt L.M., Fixen D.R. Osteoporosis and Osteomalacia. In: Tisdale JE, Miller DA, eds. Drug‐Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda: American Society of Health‐System Pharmacists, 2018. Р. 1119–33.


6. O’Connel M.B., Borgelt M.B., Bowles S.K., Vondracek S.F. Drug-induced osteoporosis in the older adult. Aging Health. 2010;6(4):501–18.


7. Panday K, Gona A., Humphrey M.B. Medication-induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskel Dis. 2014;6(5):185–202. Doi: 10.1177/1759720X14546350.


8. Mazziotti G., Canalis E., Giustina A. Drug-induced Osteoporosis: Mechanisms and Clinical Implications. Am J Med. 2010;123:877–84. Doi: 10.1016/j.amjmed.2010.02.028.


9. Nguyen K.-D., Bagheri B., Bagheri H. Druginduced bone loss: a major safety concern in Europe. Exp Opin Drug Saf. 2018;17(10):1005–14. Doi: 10.1080/14740338.2018.1524868.


10. Civitelli R., Ziambaras K. Epidemiology of glucocorticoid-induced osteoporosis. J Endocrinol Invest. 2008;31(7):2–6.


11. Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol. 2010;6(2):82–8. Doi: 10.1038/nrrheum.2009.259.


12. van Staa T.P., Leufkens H.G.M., Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2002;13(10):777–87. Doi: 10.1007/s001980200108.


13. Dowsett M., Cuzick J., Ingle J., et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28(3):509–18. Doi: 10.1200/JCO.2009.23.1274.


14. Ghazi M., Roux C. Hormonal deprivation therapy-induced osteoporosis in postmenopausal women with breast cancer. Best Pract Res Clin Rheumatol. 2009;23(6):805–11. Doi: 10.1016/j.berh.2009.09.003.


15. Howell A., Cuzick J., Baum M., et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 2005;365(9453):60–62. Doi: 10.1016/S0140-6736(04)17666-6.


16. Rabaglio M., Sun Z., Price K.N., et al. Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1–98 trial. Ann. Oncol. 2009;20(9):1489–98. Doi: 10.1093/annonc/mdp033.


17. Coleman R.E., Banks L.M., Girgis S.I., et al. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol. 2007;8(2):119–27. Doi: 10.1016/S1470-2045(07)70003-7.


18. Tammela T. Endocrine treatment of prostate cancer. J Steroid Biochem Mol Biol. 2004;92(4):287–95.


19. Shahinian V.B., Kuo Y.F., Freeman J.L., Goodwin J.S.Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64. Doi: 10.1056/NEJMoa041943.


20. Smith M.R., Boyce S.P., Moyneur E., et al. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175(1):136–39. Doi: 10.1016/S0022-5347(05)00033-9.


21. Mittan D., Lee S., Miller E., et al. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab. 2002;87(8):3656–61. Doi: 10.1210/jcem.87.8.8782.


22. Lee H., McGovern K., Finkelstein J.S., Smith M.R. Changes in bone mineral density and body composition during initial and long-term gonadotropin-releasing hormone agonist treatment for prostate carcinoma. Cancer. 2005;104(8):1633–37. Doi: 10.1002/cncr.21381.


23. Davidge Pitts C.J., Kearns A.E. Update on medications with adverse skeletal effects. Mayo Clin Proc. 2011;86(4):338–43. Doi: 10.4065/mcp.2010.0636.


24. Cromer B.A., Scholes D., Berenson A., et al. Depot medroxyprogesterone acetate and bone mineral density in adolescents – the Black Box Warning: a Position Paper of the Society for Adolescent Medicine. J Adolesc Health Off Publ Soc Adolesc Med. 2006;39(2):296–301. Doi: 10.1016/j.jadohealth.2006.03.011.


25. Cromer B.A., Bonny A.E., Stager M., et al. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study. Fertil Steril. 2008;90(6):2060–67. Doi: 10.1016/j.fertnstert.2007.10.070.


26. Lanza L.L., McQuay L.J., Rothman K.J., et al. Use of Depot Medroxyprogesterone Acetate Contraception and Incidence of Bone Fracture. Obstet Gynecol. 2013;121(3):593–600. Doi: 10.1097/AOG.0b013e318283d1a1.


27. Zaidi M., Davies T.F., Zallone A., et al. Thyroid-stimulating hormone, thyroid hormones, and bone loss. Curr Osteoporos. Rep. 2009;7(2):47–52.


28. Lakatos P. Thyroid hormones: beneficial or deleterious for bone? Calcif Tissue Int. 2003;73:205–9. Doi: 10.1007/s11914-009-0009-0.


29. Mazziotti G., Sorvillo F., Piscopo M., et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J Bone Miner Res. 2005;20:480–86. Doi: 10.1359/JBMR.041126.


30. Mazziotti G., Porcelli T., Patelli I., et al. Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone. 2010;46(3):747–51. Doi: 10.1016/j.bone.2009.10.031.


31. Faber J., Galloe A.M. Changes in bone mass during prolonged subclinical hyperthyroidism due to l thyroxine treatment: a meta-analysis. Eur J Endocrinol. 1994;130(4):350–56.


32. Uzzan B., Campos J., Cucherat M., et al. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab. 1996;81(12):4278–89.


33. Bauer D.C., Ettinger B., Nevitt M.C., Stone K.L. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134(7):561–68.


34. Svare A., Nilsen T.I., Bjoro T., et al. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur J Endocrinol. 2009;161(5):779–86. Doi: 10.1530/EJE-09-0139.


35. Morris M.S. The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone. 2007;40(4):1128–34. Doi: 10.1016/j.bone.2006.12.001.


36. Pack A.M., Gidal B., Vazquez B. Bone disease associated with antiepileptic drugs. Cleve Clin J. Med. 2004;71(2):S42–S48. Doi: 10.3949/ccjm.71.suppl_2.s42.


37. Pack A.M. Antiepileptic drugs and bone disease. Clin Rev Bone Mineral Metab. 2004;2(2):159–65. Doi: 10.1385/BMM:2:2:159.


38. Andress D.L., Ozuna J., Tirschwell D., et al. Antiepileptic druginduced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–86.


39. Petty S.J., O’Brien T.J., Wark J.D. Anti-epileptic medication and bone health. Osteoporos Int. 2007;18:129–42.


40. Ensrud K.E., Walczak T.S., Blackwell T., et al. Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology. 2004;62(11):2051–57. Doi: 10.1212/01.wnl.0000125185.74276.d2.


41. Vestergaard P. Epilepsy, osteoporosis and fracture risk – a meta-analysis. Acta Neurol Scand. 2005;112(5):277–86. Doi: 10.1111/j.1600-0404.2005.00474.x.


42. Haney E.M., Chan B.K., Diem S.J., et al. Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med. 2007;167(12):1246–51.


43. Warden S.J., Haney E.M. Skeletal effects of serotonin (5-hydroxytryptamine) transporter inhibition: evidence from in vitro and animal-based studies. J Musculoskelet Neuronal Interact. 2008;8(2):121–32.


44. Schwan S., Hallberg P. SSRIs, bone mineral density, and risk of fractures – a review. Eur Neuropsychopharmacol. 2009;19(10):683–92.


45. Takkouche B., Montes-Martinez A., Gill S.S., Etminan M. Psychotropic medications and the risk of fracture: a meta-analysis. Drug Saf. 2007;30(2):171–84. Doi: 10.2165/00002018-200730020-00006.


46. Spangler L., Scholes D., Brunner R.L., et al. Depressive symptoms, bone loss, and fractures in postmenopausal women. J Gen Intern Med. 2008;23(5):567–74. Doi: 10.1007/s11606-008-0525-0.


47. Richards J.B., Papaioannou A., Adachi J.D., et al. Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med. 2007;167(2):188–94. Doi: 10.1001/archinte.167.2.188.


48. van den Brand M.W., Samson M.M., Pouwels S.,et al. Use of anti-depressants and the risk of fracture of the hip or femur. Osteoporos Int. 2009;20(10):1705–13. Doi: 10.1007/s00198-009-0849-6.


49. Ziere G., Dieleman J.P., van der Cammen T.J., et al. Selective serotonin reuptake inhibiting antidepressants are associated with an increased risk of nonvertebral fractures. J Clin Psychopharmacol. 2008;28(4):411–17.


50. Williams L.J., Henry M.J., Berk M., et al. Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression. Int Clin Psychopharmacol. 2008;23(2):84–7. Doi: 10.1097/YIC.0b013e3282f2b3bb


51. Diem S.J., Blackwell T.L., Stone K.L., et al. Use of antidepressants and rates of hip bone loss in older women: the Study of Osteoporotic Fractures. Arch Intern Med. 2007;167(12):1240–45.


52. Wright M.J., Proctor D.D., Insogna K.L., Kerstetter J.E. Proton pump-inhibiting drugs, calcium homeostasis, and bone health. Nutr Rev. 2008;66(2):103–8. Doi: 10.1111/j.1753-4887.2008.00015.x.


53. Yang Y.X. Proton pump inhibitor therapy and osteoporosis. Curr Drug Saf. 2008;3(3):204–9. Doi: 10.2174/157488608785699414.


54. Yang Y.-X., Lewis J.D., Epstein S., Metz D.C. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–53. Doi: 10.1001/jama.296.24.2947.


55. Yu E.W., Blackwell T., Ensrud K.E., et al. Acid-suppressive medications and risk of bone loss and fracture in older adults. Calcif Tissue Int. 2008;83(4):251–59. Doi: 10.1007/s00223-008-9170-1.


56. Roux C., Briot K., Gossec L., et al. Increase in vertebral fracture risk in postmenopausal women using omeprazole. Calcif Tissue Int. 2009;84(1):13–9. Doi: 10.1007/s00223-008-9188-4.


57. Vestergaard P., Rejnmark L., Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;79(2):76–83. Doi: 10.1007/s00223-006-0021-7.


58. Targownik L.E., Lix L.M., Metge C.J., et al. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ. 2008;179(4):319–26. Doi: 10.1503/cmaj.071330.


59. Kaye J.A., Jick H. Proton pump inhibitor use and risk of hip fractures in patients without major risk factors. Pharmacotherapy. 2008; 28(8):951–59. Doi: 10.1592/phco.28.8.951.


60. Gray S.L., LaCroix A.Z., Larson J., et al. Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women’s Health Initiative. Arch Intern Med. 2010;170(9):765–71.


61. Grey A. Thiazolidinedione-induced skeletal fragility – mechanisms and implications. Diabet Obes Metab. 2009;11(4):275–84. Doi: 10.1111/j.1463-1326.2008.00931.x.


62. Habib Z.A., Havstad S.L., Wells K., et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with Type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600. DOI: 10.1210/jc.2009-1385.


63. Bodmer M., Meier C., Kraenzlin M.E., Meier C.R. Risk of fractures with glitazones: a critical review of the evidence to date. Drug Saf. 2009;32(7):539–47. Doi: 10.2165/00002018-200932070-00001.


64. Grey A., Bolland M., Gamble G., et al. The peroxisome proliferator-activated receptor g agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92(4):1305–10. Doi: 10.1210/jc.2006-2646.


65. Loke Y.K., Singh S., Furberg C.D. Long-term use of thiazolidinediones and fractures in Type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32–9. Doi: 10.1503/cmaj.080486.


66. Dormuth C.R., Carney G., Carleton B., et al. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009;169(15):1395–402. Doi: 10.1001/archinternmed.2009.214.


67. Jones S.G., Momin S.R., Good M.W., et al. Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care. 2009;15(8):491–96. Doi: 10.1371/journal.pmed.1000154.


68. Douglas I.J., Evans S.J., Pocock S., Smeeth L. The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med. 2009;6(9):E1000154.


69. Schwartz A.V, Sellmeyer D.E., Vittinghoff E., et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91(9):3349–54. Doi: 10.1210/jc.2005-2226.


70. Yaturu S., Bryant B., Jain S.K. Thiazolidinedione treatment decreases bone mineral density in Type 2 diabetic men. Diabetes Care. 2007;30(6):1574–76. Doi: 10.2337/dc06-2606.


71. Miyazaki M., Fujikawa Y., Takita C., Tsumura H. Tacrolimus and cyclosporine A inhibit human osteoclast formation via targeting the calcineurin-dependent NFAT pathway and an activation pathway for c-Jun or MITF in rheumatoid arthritis. Clin Rheumatol. 2007;26:231–39. Doi: 10.1007/s10067-006-0287-1.


72. Zawawi M., Dharmapatni A., Cantley M., et al. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation. Biochem Biophys Res Commun. 2012;427:404–9. Doi: 10.1016/j.bbrc.2012.09.077.


73. Movsowitz C., Epstein S., Fallon M., et al. Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology. 1988;23:2571–77.


74. Kulak C., Borba V., Kulak Junior J., Shane E. Transplantation osteoporosis. Arq Bras Endocrinol Metabol. 2006;50:783–92. Doi: 10.1590/s0004-27302006000400023.


75. Stein B., Halloran B., Reinhardt T., et al. Cyclosporin-A increases synthesis of 1,25-dihydroxyvitamin D3 in the rat and mouse. Endocrinology. 1991;128:1369–73.


76. Ferraccioli G., Casatta L., Bartoli E. Increase of bone mineral density and anabolic variables in patients with rheumatoid arthritis resistant to methotrexate after cyclosporin A therapy. J Rheumatol. 1996;23:1539–42.


77. Mazzantini M., Di Munno O., Sinigaglia L., et al. Effect of cyclosporine A on bone density in female rheumatoid arthritis patients: results from a multicenter, cross-sectional study. Clin Exp Rheumatol. 2007;25:709–15.


78. Brown T.T., Qaqish R.B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS Lond Engl. 2006;20(17):2165–74. Doi: 10.1097/QAD.0b013e32801022eb.


79. T riant V.A., Brown T.T., Lee H., Grinspoon S.K. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504. Doi: 10.1210/jc.2008-0828.


80. Schwartz A., Leonidas J. Methotrexate osteopathy. Skeletal Radiol. 1984;11:13–6.


81. Pfeilschifter J., Diel I. Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol. 2000;18:1570–93. Doi: 10.1200/JCO.2000.18.7.1570.


82. Kock H.J., Handschin A.E. Osteoblast growth inhibition by unfractionated heparin and by low molecular weight heparins: an in-vitro investigation. Clin Appl Thromb Hemost. 2002;8(3):251–55.


83. Vik A., Brodin E., Sveinbjornsson B., Hansen J.B. Heparin induces mobilization of osteoprotegerin into the circulation. Thromb Haemost. 2007;98(1):148–54.


84. Douketis J., Ginsberg J., Burrows R., et al. The effects of long-term heparin therapy during pregnancy on bone density. A prospective matched cohort study. Thromb Haemost. 1996:75:254–57.


85. Barbour L., Kick S., Steiner J., et al. A prospective study of heparin-induced osteoporosis in pregnancy using bone densitometry. Am J Obstet Gynecol. 1994;170:862–69.


86. Dahlman T. Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993;168:1265–70.


87. Monreal M., Lafoz E., Olive A., et al. Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to coumarin. Thromb Haemost. 1994;71:7–11.


88. Griffith G.C., Nichols G.Jr., Asher J.D., Flanagan B. Heparin Osteoporosis. JAMA. 1965;193:91–4.


89. Squires J.W., Pinch L.W. Heparin-induced spinal fractures. JAMA. 1979;241(22):2417–18.


90. Rupp W.M., McCarthy H.B., Rohde T.D., et al. Risk of osteoporosis in patients treated with long-term intravenous heparin therapy. Curr Surg. 1982;39(6):419–22.


91. Jaffe M.D., Willis P.W. Multiple fractures associated with long-term sodium heparin therapy. JAMA. 1965;193:158–60.


92. Pettila V., Leinonen P., Markkola A., et al. Postpartum bone mineral density in women treated for thromboprophylaxis with unfractionated heparin or LMW heparin. Thromb Haemost. 2002;87(2):182–86.


93. Monreal M., Vinas L., Monreal L., et al. Heparin-related osteoporosis in rats. A comparative study between unfractioned heparin and a low-molecular-weight heparin. Haemostasis. 1990;20(4):204–7.


94. Lian J., Gundberg C. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res. 1988;267–91.


95. Caraballo P., Heit J., Atkinson E., et al. Long-term use of oral anticoagulants and the risk of fracture. Arch Intern Med. 1999;159:1750–56. Doi: 10.1001/archinte.159.15.1750.


96. Fiore C., Tamburino C., Foti R., Grimaldi D. Reduced axial bone mineral content in patients taking an oral anticoagulant. South Med J. 1990;83:538–42.


97. Philip W., Martin J., Richardson J., et al. Decreased axial and peripheral bone density in patients taking longterm warfarin. QJM. 1995;88:635–40.


98. Piro L., Whyte M., Murphy W., Birge S. Normal cortical bone mass in patients after long term coumadin therapy. J Clin Endocrinol Metab. 1982;54:470–73.


99. Woo C., Chang L., Ewing S., Bauer D. Osteoporotic Fractures in Men Study Group. Single-point assessment of warfarin use and risk of osteoporosis in elderly men. J Am Geriatr Soc. 2008;56:1171–76. Doi: 10.1111/j.1532-5415.2008.01786.x.


100. Jamal S., Browner W., Bauer D., Cummings S. Warfarin use and risk for osteoporosis in elderly women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1998;128:829–32. Doi: 10.7326/0003-4819-128-10-199805150-00006.


101. Huang H.-K., Liu P.P.-S., Hsu J.-Y., et al. Fracture risks among patients with atrial fibrillation receiving different oral anticoagulants: a real-world nationwide cohort study. Eur Heart J. 2020;0:1–9. Doi: 10.1093/eurheartj/ehz952.


102. Huang H.-K., Liu P.P.-S., Hsu J.-Y., et al. Risk of Osteoporosis in Patients With Atrial Fibrillation Using Non–Vitamin K Antagonist Oral Anticoagulants or Warfarin. J Am Heart Assoc. 2020;9:e013845. Doi: 10.1161/JAHA.119.013845.


103. Rejnmark L., Vestergaard P., Heickendorff L., et al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257(2):176–84. Doi: 10.1111/j.1365-2796.2004.01434.x.


104. Ooms M.E., Lips P., Van Lingen A., Valkenburg H.A. Determinants of bone mineral density and risk factors for osteoporosis in healthy elderly women. J Bone Miner Res. 1993;8(6):669–75.


105. Heidrich F.E., Stergachis A., Gross K.M. Diuretic drug use and the risk for hip fracture. Ann Intern Med. 1991;115(1):1–6.


106. Rashiq S., Logan R.F. Role of drugs in fractures of the femoral neck. BMJ. (Clin Res Ed.). 1986;292(6524):861–63.


107. Cumming R.G., Klineberg R.J. Psychotropics, thiazide diuretics and hip fractures in the elderly. Med J Aust. 1993;158(6):414–17.


108. Rejnmark L., Vestergaard P., Heickendorff L., et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163–70. Doi: 10.1359/JBMR.051003.


109. Rejnmark L., Vestergaard P., Heickendorff L., еt al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257(2):176–84. Doi: 10.1111/j.1365-2796.2004.01434.x.


Об авторах / Для корреспонденции


Автор для связи: О.Д. Остроумова, д.м.н., зав. кафедрой терапии и полиморбидной патологии, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; е-mail: ostroumova.olga@mail.ru 
Адрес: 125993, Россия, Москва, ул. Баррикадная, 2/1, стр. 1 


ORCID:
О.Д. Остроумова, ORCID: https://orcid.org/0000-0002-0795-8225  
И.В. Голобородова, ORCID: https://orcid.org/0000-0003-4583-6330 


Бионика Медиа