DOI: https://dx.doi.org/10.18565/pharmateca.2025.5.6-12
Попова А.И., Орлова Е.А., Костина Е.М., Николашина О.Е.
1) Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, кафедра аллергологии и иммунологии с курсом дерматовенерологии и косметологии, Пенза, Россия; 2) Пензенский государственный университет, кафедра «Микробиология, эпидемиология и инфекционные болезни», Пенза, Россия
1. Rowe B., Yosipovitch G. Malignancy-associated pruritus. Eur J Pain (London, England). 2016;20(1):19–23. https://dx.doi.org/10.1002/ejp.760 2. McCormick B.J., Zieman D., Sluzevich J.C., et al. Clinical features of cutaneous paraneoplastic syndromes in Hodgkin Lymphoma. J Investig Med High Impact Case Rep. 2024;12:23247096241255840. https://dx.doi.org/10.1177/23247096241255840 3. Ferretti E., Hohaus S., Di Napoli A., et al. Interleukin-31 and thymic stromal lymphopoietin expression in plasma and lymph nodes of Hodgkin lymphoma patients. Oncotarget. 2017;8(49):85263–85275. https://dx.doi.org/10.18632/oncotarget.19665 4. Greaves P., Clear A., Owen A., et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood. 2013;122(16):2856–2863. https://dx.doi.org/10.1182/blood-2013-06-508044 5. Weisshaar E., Szepietowski J.C., Dalgard F.J., et al. European S2k Guideline on chronic pruritus. Acta Derm Venereol. 2019;99(5):469–506. https://dx.doi.org/10.2340/00015555-3164 6. Yosipovitch G. Chronic pruritus: a paraneoplastic sign. Dermatol Ther. 2010;23(6):590-596. https://dx.doi.org/10.1111/j.1529–8019.2010.01366.x 7. Wang H., Yosipovitch G. New insights into the pathophysiology and treatment of chronic itch in patients with end-stage renal disease, chronic liver diseases, and lymphoma. Int J Dermatol. 2010;49(1):1–11. https://dx.doi.org/10.1111/j.1365-4632.2009.04249.x 8. Рукавицын А.О., Ламоткин И.А., Рукавицын О.А. и др. Неспецифические поражения кожи при злокачественных лимфомах. Вестник дерматологии и венерологии. 2020;4:76–80. 9. Rubenstein M., Duvic M. Cutaneous manifestations of Hodgkin’s disease. Int J Dermatol. 2006;45(3):251-256. https://dx.doi.org/10.1111/j.1365-4632.2006.02675.x 10. Hiramanek N. Itch: a symptom of occult disease. Aust Fam Physician. 2004;33(7):495–499. 11. Gobbi P.G., Attardo-Parrinello G., Lattancio G., et al. Severe pruritus should be a B symptom in Hodgkin’s disease. Cancer. 1983;51(10):1934–1936. https://dx.doi.org/10.1002/1097-0142(19830515)51:10<1934::aid-cncr2820511030>3.0.co;2-r 12. Anderson A.C., Joller N., Kuchroo V.K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. 13. Ko Y.W., Jeon Y.K., Yoon D.H., et al. Programmed cell death 1 protein expression in the peritumoral microenvironment is associated with worse prognosis in classical Hodgkin lymphoma. Tumour Biol. 2016;37(6):7507–7514. https://dx.doi.org/10.1007/s13277-015-4622-5 14. Greaves P., Clear A., Owen A., et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood. 2013;122(16):2856–2863. https://dx.doi.org/10.1182/blood-2013-06-508044 15. Steidl C., Bertucci F., Finetti P., et al. Molecular profiling of classical Hodgkin lymphoma tissues identifies variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113(12):2765–2775. https://dx.doi.org/10.1182/blood-2008-07-168096 16. Churchill H.R., Roncador G., Warnke R.A., et al. Programmed death-1 ligand 1 expression in various histologic patterns of nodular lymphocyte predominant Hodgkin lymphoma: comparison with CD57 and lymphoma in the differential diagnosis. Hum Pathol. 2010;41(12):1726–1734. https://dx.doi.org/10.1016/j.humpath.2010.05.010 17. Muenst S., Hoeller S., Dirnhof S., et al. Increased programmed death-1 receptor+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma is associated with decreased overall survival. Hum Pathol. 2009;40(12):1715–1722. https://dx.doi.org/10.1016/j.humpath.2009.03.025 18. Hu M., Scheffel J., Elieh-Ali-Komi D., et al. Recent insights into itch mechanisms and potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Dermatol. 2023;23(8):4177–4197. https://dx.doi.org/10.1007/s10238-023-01141-x 19. Hu M., Scheffel J., Frischbutter S., et al. Characterization of itch-associated cells and mediators in primary cutaneous T-cell lymphomas. Clin Exp Dermatol. 2024;24(1):171. https://dx.doi.org/10.1007/s10238-024-01407-y 20. Wen X., Yu H., Zhang L., et al. Correlation and clinical significance of serum cytokine expression levels and skin pruritus in patients with Hodgkin lymphoma and angioimmunoblastic T-cell lymphoma. Int Immunopharmacol. 2024;131:111777. https://dx.doi.org/10.1016/j.intimp.2024.111777 21. Cevikbas F., Wang X., Akiyama T., et al. IL-31 receptor-expressing sensory neurons mediate T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133(2):448–460. https://dx.doi.org/10.1016/j.jaci.2013.10.048 22. Feld M., Garcia R., Buddenkotte J., et al. The itch-associated, TH2-derived cytokine IL-31 promotes sensory nerve growth. J Allergy Clin Immunol. 2016;138(2):500–508.e24. https://dx.doi.org/10.1016/j.jaci.2016.02.020 23. Nakajima M., Watanabe M., Nakano K., et al. Differentiation of Hodgkin lymphoma cells induced by reactive oxygen species and regulated by heme oxygenase-1 via HIF-1α. Cancer Sci. 2021;112(6):2542–2555. https://dx.doi.org/10.1111/cas.14890 24. Kim S.A., Jang J.H., Kim S., et al. Mitochondrial reactive oxygen species evoke acute and chronic itch via transient receptor potential canonical 3 activation in mice. Neurosci Bull. 2022;38(4):373–385. https://dx.doi.org/10.1007/s12264-022-00837-6 25. Hsu S.M., Hsu P.L. Autocrine and paracrine functions of cytokines in malignant lymphomas. Biomed Pharmacother. 1994;48(10):433–444. https://dx.doi.org/10.1016/0753-3322(94)90004-3 26. Chen Z.F. Neuropeptide coding of itch. Nat Rev Neurosci. 2021;22(12):758–776. https://dx.doi.org/10.1038/s41583-021-00526-9 27. Datsi A., Steinhoff M., Ahmad F., et al. Interleukin-31: the «itchy» cytokine in inflammation and therapy. Allergy. 2021;76(10):2982–2997. https://dx.doi.org/10.1111/all.14791 28. Di Salvo E., Allegra A., Casciaro M., Gangemi S. IL-31, itch, and hematological malignancies. Clin Mol Allergy. 2021;19(1):8. https://dx.doi.org/10.1186/s12948-021-00157-y 29. Cevikbas F., Wang X., Akiyama T., et al. IL-31 receptor signaling mediates itch in atopic dermatitis. J Allergy Clin Immunol. 2014;133(2):448–460. https://dx.doi.org/10.1016/j.jaci.2013.10.048 30. Di Salvo E., Casciaro M., Gangemi S. IL-33 genetics and epigenetics in immune-related diseases. Clin Mol Allergy. 2021;19(1):18. https://dx.doi.org/10.1186/s12948-021-00171-1 31. Skinnider B.F., Mak T.W. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99(12):4283–4297. https://dx.doi.org/10.1182/blood-2002-01-0099 32. Benharroch D., Prinsloo J., Apte R.N., et al. Interleukin-1 and tumor necrosis factor-alpha in Reed-Sternberg cells of Hodgkin’s disease. Correlation with clinical and morphological «inflammatory» features. Cytokine Network. 1996;7(1):51–57 33. Gorschlüter M., Bohlen H., Hasenclever D., et al. Serum cytokine levels correlate with clinical features in Hodgkin’s disease. Ann Oncol. 1995;6(5):477–482. https://dx.doi.org/10.1093/oxfordjournals.annonc.a059218 34. Güler N., Yilmaz S., Ayaz S., et al. Platelet-derived growth factor (PDGF) levels in Hodgkin’s disease and non-Hodgkin’s lymphoma and its relationship with disease activation. Hematology. 2005;10(1):53–57. https://dx.doi.org/10.1080/10245330400020405 35. Yosipovitch G., Rosen J.D., Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol. 2018;142(5):1375–1390. https://dx.doi.org/10.1016/j.jaci.2018.09.005 36. Ellis A.K., Weatherman S. Hodgkin lymphoma presenting with markedly elevated IgE level: A case report. Allergy Asthma Clin Immunol. 2009;5(1):12. https://dx.doi.org/10.1186/1710-1492-5-12 37. Wang F., Kim B.S. Itch: A Paradigm of neuroimmune crosstalk. Immunity. 2020;52(5):753–766. https://dx.doi.org/10.1016/j.immuni.2020.04.008 38. Misery L., Pierre O., Le Gall-Ianotto C., et al. Major mechanisms of itch. J Allergy Clin Immunol. 2023;152(1):11–23. https://dx.doi.org/10.1016/j.jaci.2023.05.004 39. Смирнова И.О., Петунова Я.Г., Шин Н.В. и др. Зуд, ассоциированный с ксерозом кожи: от патогенеза к терапии. Эффективная фармакотерапия. 2025;21(3):24–28. 40. Chen O., He Q., Han Q., et al. Mechanisms and treatment of neuropathic itch in a lymphoma mouse model. J Clin Invest. 2023;133(4):e160807. https://dx.doi.org/10.1172/JCI160807 41. Demierre M.F., Taverna J. Mirtazapine and gabapentin for reducing pruritus in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2006;55(3):543–544. https://dx.doi.org/10.1016/j.jaad.2006.04.025
Анна Ивановна Попова, аспирант кафедры аллергологии и иммунологии с курсом дерматовенерологии и косметологии, Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, Пенза, Россия; annapopova3107@gmail.com, ORCID: https://orcid.org/0009-0006-4847-1735 (автор, ответственный за переписку)
Екатерина Александровна Орлова, д.м.н., доцент, зав. кафедрой аллергологии и иммунологии с курсом дерматовенерологии и косметологии, Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, Пенза, Россия;
lisaorl@yandex.ru, ORCID: https://orcid.org/0000-0002-3902-2018
Елена Михайловна Костина, д.м.н., доцент, профессор кафедры аллергологии и иммунологии с курсом дерматовенерологии и косметологии, Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО РМАНПО Минздрава России, Пенза, Россия;
elmihkostina@yandex.ru, ORCID: https://orcid.org/0000-0003-1797-8040
Ольга Евгеньевна Николашина, к.м.н., доцент кафедры микробиологии, эпидемиологии и инфекционных болезней, Пензенский государственный университет, Пенза, Россия, nikolashina515@mail.ru, ORCID: https://orcid.org/0009-0001-6903-2356